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Discrete Optimization of Digital Filters Using 
Gaussian Adaptation and Quadratic 

Function Minimization 

G. KJELLSTRQM, L. TAXfiN, AND P. 0. LINDBERG 

~htr~~t-In this paper, a new strategy for discrete optimization of a 
function F(x) is presented. Let A be the’ region in the n-dimensional 
parameter space, where F(x) is less than some constant. First, A is 
located and characteri+ by a Gaussian search process, called GU.W~UII 
~hpt~ti~tt. This makes it possible to approximate the behavior of F(X) 
over A by a quadratic function Q(x). Q(x) is then optimized for the N 
best discrete solutions using a branch and bound technique. Finally, these 
points are evaluated for the best F(x) points. 

By various digital filter examples it will be demonstrated that the new 
method ‘is more capable of finding good solutions than methods presented 
so far. 

I. INTR~LHJCTI~N 

Discrete optimization appears in many different areas, such as 
the design of digital filters, the design of switched capacitor 
filters, and the design of analog filters, where only certain stan- 
dard component values are allowed. A discrete variable m+y also 
be the number of wagons in a train or the number of ships used 
for transportation. Some authors even think of discrete optimiza- 
tion as a model for the evolution of biological systems [5]. 

In this paper, however, we will restrict ourselves to the problem 
of designing digital filters with quantized coefficients. Several 
methods [l]-[4], [6], [7], [9]-[15] for solving this problem exist. 
One way is to do a preoptimization of an associated continuous 
optimization problem before the assault on the discrete problem 
is made. In doing so, any well-established method for continuous 
optimization of a function F(x) of designable parameters x can 
be used. (For a proper definition of F(x), see Section II.) 

One such approach is to utilize the eigenvectors of the Hessian 
(a quadratic function approximation of the local behavior of 
F(x) at the minimum) to generate linear search directions for the 
optimal discrete points [2]. In this case, F(x) should also be a 
differentiable function. Another very similar method is to gener- 
ate the linear search directions at random from the Gaussian 
distribution adapted with maximum hitting probability to the set 
of acceptability [l]. A third method is the procedure based on the 
pattern search of Hooke and Jeeves [3]. 

Another interesting apprqach has been given by Jain [7]. In 
this case, the total number of bits different from zero in the 
coefficients of the digital filter (according to the CSD code) is 
taken as the criterion, or cost function C(x). This criterion is 
derived from four important cost factors, which have to be 
considered by designers of digital filters: 

l chip area, 
l power dissipation, 
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l signal processing time, 
l design time. 

In this case, F(x) may be defined as being smaller than some 
constant value when all requirements on the digital filter are 
fulfilled. All ,points in A are then “acceptable,” i.e., they corre- 
spond to a filter meeting all requirements. However, their corre- 
sponding cost function C(x) has .a very irregular structure. There 
may even exist many points having the same optimum cost value 
and all spread out like isolated islands in A. Obviously, classical 
optimization algorithms do not work satisfactorily on such a 
function. 

One way to attack this problem is to construct an algorithm 
that can select potentially iqtercsting points from either 

l the set of acceptable points A or 
l the set C of all points having a cost smaller than some 

constant. 

In [7], A is approximated by a special procedure, and then a 
strategy for selecting points from C is recommended. 

In this paper, we will show that better results may be obtained 
by 

l a different approximation of A, 
l a more systematic way of selecting discrete points from A 

in the case of performance optimization of F(x), 
l a different way of selecting points from A in the case of 

cost optimization of C(x). 

In Section !I, definitions are given. The problems are then 
formulated in Section III. Section IV contains a summary of the 
Gaussian adaptation search process, and Section V describes the 
discrete optimization procedure for quadratic functions. An out- 
line of the new method is presented in Section VI, and, finally, 
some examples are given in Section VII. 

II. DEFINITIONS 

Designable Parameters 
x = n-dimensional vector of designable parameters 
x E R” for continuous optimization problems 
x E D” for discrete optimization problems. 

D is some numerable set of numbers, e.g. integers. 
Performance Function F(x) 

A function F: R" -+ R' -+ R' mapping the input space to the 
filter response space and further to the performance space ‘using 
the filter specifications. 
Example: - 

f 
H(f> x> 
A(f, x) 
U(f) 
L(f) 
F(x) 
F(x) 

frequency 
transfer function 
-2O*log,,(IH(f,x)l), attenuation 
upper requirement 
lower requirement 
may (Nf, x)- V[), Uf >- A(f, x)) or 

where we assume U(f) = 

The Set of Acceptabdity 
A = { xlF(x) < a}, a = some constant. 
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Cost Function C(x) 
According to Jain [7], C(x) is defined as follows: let 

Xj = i 4,2-i 
i=o 

bethejthcomponentofx,bji=(-1,0,1}theithbitofxj,and 
m the number of bits to represent xj. The cost of integration 
C(x) is then given by 

C(x) = i C(Xj) 
j=l 

tion procedure. The reason is that a Gaussian variable has the 
largest dispersion (“ability to cover R” “) among variables having 
equal moment matrices, where the dispersion is defined by 

d=exp( -/V(x)logY(x) dx). 

The expression in parentheses is usually referred to as the entropy 
[8] of the variable X having the p.d.f. V(x). While the entropy is 
usually not uniquely defined, the dispersion is always unique and 
is exactly equal to the volume of a set A if V(x) is uniformly 
distributed over A. 

where C(x,) is the cost of an individual coefficient ,as follows: Il. Maximizing Conditions 

i-l 

which means that the bit corresponding to 2’ is not included. 
The Set of Low Cost 

C = (x]C(x) < a}, a = some constant. 
The Gaussian p. d. f. 

G(x) = (2n)-“/*(det M)-‘/*expQ 
Q(x) = -(x - ~)~M-l(x - p)/2 

where ~1 is the average of Gaussian p.d.f., and M is the moment 
matrix of Gaussian p.d.f. 

III. PROBLEMFORMULATION 

Minimize the nonlinear continuous function F(x) wrt x sub- 
ject to 

XED”. 
This problem, which will be referred to as (Pl) is the classical 
discrete optimization problem in digital filter design. In practical 
cases, it is more relevant to minimize the cost function C(x). We 
then have the following problem. 

h4inimize the discrete nondifferentiable function C(x) subject 
to 

and 
XEA 

XED”. 
This problem will be referred to as (P2). Both these problems will 
be considered in the following. In addition, the following sub- 
problem has to be solved. 

Minimize the quadratic function 

Q(x) =(x-,u)kl(x-p) 

subject to 

XED”. 
This problem will be referred to as (Q). 

IV. GAUSSIAN ADAPTATION 

According to ]l], a Gaussian distribution can, in a fairly 
straightforward way, be adapted to the set A to give maximum 
hitting probability on A. This gives us maximum (in the maxi- 
mum entropy sense) information about the location and orienta- 
tion of A in the parameter space. 

Since the concept of Gaussian adaptation (GA) has been 
reported elsewhere [l], we only give a short resume of its main 
features here. 

A. Dispersion 
The first point is the choice of the Gaussian prior to other 

distributions as a sampling distribution for this kind of optimiza- 

The next point is that it is possible to derive necessary condi- 
tions for G(x) to maximize the hitting probability. Keeping the 
determinant of M constant, these conditions are 

p=p* 

M=cM’, c = constant 
where p and M are the average and the moment matrix of G(x), 
and II* and M* the corresponding moments restricted to A. This 
means that G(x) will adapt to the location and extension of A. 

V. DISCRETEOPTIMIZATIONOFQUADRATICF~NCTIONS 

A quadratic function minimization (QFh4) routine for the prob- 
lem (Q) above when the matrix M-’ is positive semidefinite has 
been constructed. The same ideas as in branch and bound 
techniques for linear integer programming are used. That such 
techniques may be applied also to nonlinear problems has been 
observed by Dakin [6]. 

The general ideas behind the routine are simple. First, problem 
(Q) is relaxed by solving the associated continuous problem, 
which will be referred to as (QC): 

minimize(x-p)TMM-l(x-p) 

XER”. 
Now an optimal solution x to (QC) is computed. If this solution 
is integer (discrete), the optimum is found. 

Otherwise, if x is noninteger, (Q) is split into two subprob- 
lems, say (Ql) and (Q2), by adjoining the constraints xi < [xi], 
xi > [xi]+ 1, respectively ([a] denoting the integer part of a). 
Either of these conditions is obviously fulfilled by any integer 
solution to (Q). 

Next, the problems (Ql) and (42) are addressed in the same 
way; i.e., we relax the integrality constraints and compute the 
optimal continuous solutions. Then we proceed with the prob- 
lems with noninteger solutions, etc. In this way, a sequence of 
subproblems is generated. 

For a given subproblem (Qi), splitting does not take place if 
either of the following conditions is fulfilled (in which case one 
says (Qi) is fathomed): 

(i) the optimal continuous solution is integer, 
(ii) the problem is infeasible, 

(iii) the optimal continuous function value is worse than that 
of the best discrete solution to (Q) found so far. 

The process continues until all generated subproblems are 
fathomed. Then the optimal solution to (Q) is the best found 
discrete solution. 

When one wants to find, e.g., the N best solutions to (Q), (iii) 
above is changed to 

(iii’) the optimal value is worse than that of the Nth best 
discrete solution so far. 
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Due to the fact that we are minimizing a fixed quadratic function 
under varying bounds on the variables, efficient routines may be 
designed for optimization of the problems (Qi). The number of 
parameters that can be handled in practice is of course limited by 
the available computer resources. On a VAX 780, this limit is 
about 15 parameters. 

It. must be further noted that one must find the global opti- 
mum to each subproblem (Qi) in order to guarantee the finding 
of the global optimum to (Q). This seems not to have been noted 
in Charalambous and Best [4], who are also using branch and 
bound techniques. They claim that they have found the optimal 
solution to (Pl) in example 1 below, in spite of the fact that they 
do not demonstrate that they solve their subproblems (Pli) 
optimally. 

In our case, the problems (Qi) are solved optimally, since M-’ 
is a positive semidefinite matrix (and hence Q is convex); fur- 
thermore, the restrictions are linear. Thus, the global optimim of 
Q is always found. 

VI. THE METHOD 

Compared with the classical optimization problems, where a 
differentiable function has to be minimized by some continuous 
gradient search method, the new discrete problems are much 
more irregular. 

If we consider (Pl), we have a continuous function F(x) to 
minimize, but since x is restricted to a set of discrete points, the 
discrete optimum may be very far from the continuous one. The 
search for small F(x) in the vicinity of the continuous optimum 
is therefore not sufficient. 

In the case of (P2), things become even more difficult because 
now C(x) is not a continuous function, It exists only at the 
discrete x points, and in general, no inherent structure of C(x) 
can be utilized in the optimization. This means for example that 
the classical way of searching, where neighboring points to x are 
examined for smaller F(x), will in general not lead to the 
optimal point. 

Thus, a quite different approach is needed. We must somehow 
confine the search for the optimal point to “hot” regions in the 
parameter space. In the method to be presented, we first use GA 
to approximate the set A. This is motivated by the fact that A 
contains points with low values of F(x), and thus is a region 
where the optimal solutions are found. From Section IV we know 
that GA is an adaptive stochastic search process which strives to 
“cover” A with a Gaussian distribution G(p, M). The moments 
of the distribution are adapted in such a way as to give maximum 
“hitting” probability of samples drawn from G to fall in A. In a 
certain sense, this give us maximal information about A. 

The moment matrix M of G defines the quadratic function 
Q(x), which can be considered as an approximation of the 
“global” behavior of F(x) over A. By global approximation we 
mean that F(x) is approximated over a large region, contrary to 
the local approximation given by, e.g., the Hessian of a gradient 
method. This helps us to locate optimal discrete solutions far 
away from the optimal continuous solution. 

As pointed out, it would have been possible to use gradient 
search to find a continuous minimum to F(x) and a correspond- 
ing quadratic approximation of F(x) at that minimum. But such 
an approximation depends on the local properties of F(x) and is 
thus not necessarily a good approximation to A (Fig. 1). Conse- 
quently, a method based on this does not work well. 

Q(x) can then be minimized using QFM to give the N discrete 
points having the smallest Q values. Since G is adapted for 
maximum hitting probability over A, the chances of finding 

+ + -t + 
Fig. 1. Two different quadratic approximations of the same banana-shaped 

set. - GA approximation. - ---- Approximation using the Hessian at 
the minimum point of F(x). 

-i 4 75 4.5 -0;zs 0 O.iS 0:s 0.;5 i 

COEFFICIENT-VALUES 

Fig. 2. Function mapping filter coefficients with 4 2 bits different from zero 
to consecutive integers. Seven fractional bits arc used in the determination 
of this function. Nondiscrete values are linearly interpolated. 

many points having small F values among the N points are very 
good. This is demonstrated by Examples 1 and 2 in Section VII. 

There may exist cases where GA is less useful. For instance, if 
A is very much like an n-dimensional sphere containing a 
tremendous number of discrete points, then the N best points 
will be close to the center of A. Therefore, if the desired solution 
is close to the surface of A, it will probably not be found. 

However, in many filter design examples, the set A tends to 
form long thin “cigars” or thin “disks” that may ‘also be curved. 
The advantage of GA is that the most voluminous part of such a 
region can be located and approximated by a Gaussian distribu- 
tion. Therefore, we have high probability of finding acceptable 
discrete points. Discrete points far away from the continuous 
minimum of Q(x) or F(x) may in principle be found in this way 
(see Fig. 1). But the optimal solution might still not be found. It 
may be close to the surface of the cigar or it may exist in some 
other less voluminous part of A. 

To solve (P2), we proceed in much the same way. Instead of 
finding the point in A with the best performance value of F(x), 
we now want to find one or more points which have the lowest 
possible cost C(x) and still are feasible, i.e., belong to A. Since 
each point in the discrete x space has a cost associated with it 
(the number of nonzero bits), we can now optimize Q(x) using a 
discrete grid of only low-cost points. For example, if we have five 
coefficients and use at most two nonzero bits for each coefficient, 
the maximum cost will be 10. The optimization of Q(x) is now 
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merely a way to select those low-cost points that have a high 
possibility of belonging to A. 

If no feasible points are found, the maximum allowable cost 
for each coefficient is raised, and the optimization of Q(x) is 
redone. After each optimization, the N best discrete points are 
found and checked for feasibility. 

In order to concentrate the search on the low-cost points, the 
nonequidistant grid is mapped to an equidistant grid using a 
linear interpolation function (shown in Fig. 2) before GA is 
carried out. In our experience this gives a higher probability of 
finding low-cost solutions. This has been confirmed by running 
several examples of type (P2) (Example 3 below). 

VII. EXAMPLES 

Three examples have been chosen to demonstrate the capabil- 
ity of the method. 

Example I: The first one-given by [2]-is a wide-band dif- 
ferentiator. The filter configuration is a single second-order scc- 
tion having a transfer function 

H(f) = g(l+ a~-‘+ bz-‘)/(1-r cz-1 + dz-*) 

z=exp(j?rf) 

and 8-bit representation (sign bit, one integer bit, and six frac- 
tional bits) is to be used for a, b, c, d, and g. An integer 
constrained parameter vector is defined by multiplying each of 
the five variables by 64. 

The criterion function is defined as 

x=a,b,c,d,g. 
The optimization run was carried out in two steps, as follows. In 
the first step, a Gaussian distribution was adapted to a set of 
points defined by F(x) < 5.2796, which was the second best 
solution found by the algorithm used in [2]. The number of 
function evaluations (F) needed was = 1000. 

In the second step, the 100 best discrete points of the corre- 
sponding quadratic function are searched for and finally their F 
values are calculated. The table below shows the 10 best function 
values sorted in ascending order. 

Values of F( x) in ascending order: 

5.2230 5.2796 5.2865 5.3833 5.5742 
5.7560 5.8822 5.8874 5.8986 6.3872 

The best discrete solution is 

-19 -47 59 8 23. 
Example 2: In this example, given by Rader and Gould and 

studied by Steiglitz [3], we consider the following transfer func- 
tion: 

H(f) =gi$( l+ aiz-’ + z-*)/(1+ b;z-’ + c,zP2)} 

z=exp( jvrf). 

Some restrictions are necessary for the proper position of poles 
and zeros: 

Iail < 29 ci <l, 1 + ci + b, > 0, l+ci-b;>O 

128 * ai, 128 * b, , 128 * c, are integers. 

The criterion function is defined by 

f’(x) =ma((lH(f)i-r/)/h 
r=l,h=.03 forO<f X.4 

r=O,h=.OOl for44<f <l 

X=al,bl,cl 

a2, b2, c2 
. . . 

a4,b4,c4. 

The gain factor g is adjusted to minimize F when x is given. 
The discrete solution given by Steiglitz [3] has F(x) =1.018. 

Since the continuous solution has F(x) = .87, a natural question 
to ask is whether there exists some discrete points with, say, 
F(x) < 1. Starting from the Steightz continuous solution 

128*x = 
207.1686 - 150.8402 54.2163 

45.8626 - 115.4443 84.7414 
- 24.2721 - 87.5567 109.9035 
- 45.7889 -76.7622 123.3013 

we first adapted a Gaussian distribution to the set A defined by 
F(x) < 1 for all x in A. For this purpose, we used 4000 evalua- 
tions of F(x). After this, the 100 best points for the correspond- 
ing quadratic function were searched. Finally, their F values 
were calculated. By this method, nine points having F(x) < 1 
were found. The ten best F values were 

0.9616 0.9707 0.9782 0.9803 0.9889 
0.9911 0.9925 0.9953 0.9991 1.0003. 

The best discrete solution found (F(x) = .9616) was 

128*x= 
207 -150 54 
44 -114 85 

-25 -86 110 
-46 -76 123. 

A similar run was performed with the set A of all x having 
F(x) < .9616, since this was the best solution thus far. It is, 
however, interesting to note that not even a point x having 
F(x) < 1 was found in this way. This is an indication that the 
continuous solution is. very eccentric and that the corresponding 
ellipsoid does not include many good points. Thus, a method 
using the local behavior of F at x,, would certainly be less 
efficient in this case. 

Example 3: This example is given by Jain [7]. It is a fifth-order 
cascade voice-band filter. 

CCITT specifications on the relative gain for the PCM trans- 
mit voice-band filter are given as upper (U( f )) and lower (L( f )) 
limits for the gain in the table below. Linear interpolation is 
assumed between the break points. The sample rate is 8 kHz and 
the reference frequency is 800 Hz. 

f Wf) L(f) 
0 0.125 -0.125 

3000 0.125 -0.125 

3400 0.7 0 
4000 14 
4599 14 

4600 32 
8000 32 
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The system performance function is now defined as follows: 

2 = exp ( j?rf/SOOO) 

H(f) =(1+x,z-i+X*z-~)/(1-xsz-i-Xxqz-2) 

* 1+x,z ( -l + xsz-2)/(1 - x,z-i - x*z-2) 

* 1+x,z ( -‘)/( 1 - xi,z-‘) 

A(f) = -2O*log,,(Iff(f) I)-A@@ 

F(x) =max,(A(f)-U(f),L(f)-A(f)). 

As in the preceding examples, we will use GA and QFM in 
order to select points from A. In contrast to the preceding 
examples, the problem now is to find points of low cost rather 
than points with a small value of F(x). We will do this by simply 
using a grid of low-cost points during the discrete optimization 
-and trying to find at least one such point inside A. 

For instance, we may try coefficients having at most 2 bits 
different from zero in each word (1 bit is perhaps too optimistic). 
Seven fractional bits have been used in determining the function 
mapping coefficient values into integers, as shown in Fig. 2. As in 
the preceding example, we used 4000 calls for F(x) in order to 
adapt the Gaussian. After this, the 100 best points for the 
quadratic function were selected and sorted in ascending order 
according to their F values. In this way, 38 points x E A were 
found. We calculated C(x) for these points and we found 14 
points with C = 12, 19 points with C = 11, and five points with 
C = 10. The point having C =lO and at the same time the 
smallest value of F is 

x= 

0.265625 1 .O 0.25 -0.75 1.0 

1.0 0.1875 - 0.3125 1.0 0.140625. 

This can be compared with kin’s solution, which has a cost of 
14. 
Efficiency and Quality 

In Example 1, we have used three times as many evaluations of 
F(x) as Smith to find the global solution. But the GA algorithm 
is designed for sets A that have a very complicated structure, 
which means that A may contain several local minima of F(x) 
or it may be constrained ,in different ways. It therefore seems 
reasonable that the GA algorithm consumes relatively more 
evaluations on very simple examples. 

In Example 2, the exact number of evaluations was not given 
by Steiglitz, so it is difficult to compare the efficiency of the 
algorithms. But we got a higher quality in the final result and we 
think that this is more important in most cases. Besides, we can 
never tell how many extra evaluations Steiglitz would need to 
reach our result. 

In the last example, efficiencies are also difficult to compare 
because we end up with a 40-percent better result with five times 
more effort. Nevertheless, a 40-percent cost reduction of the 
PCM voice-band filter means saving a lot of money as compared 
to some extra 3000 evaluations of F(x). In similar situations, 
therefore, we think such extra evaluations should always be done 
if possible. 

VIII. CONCLUSIONS 

We have used GA in combination with QFM in order to solve 
certain discrete optimization problems in the area of digital filter 
design. The GA method was originally developed for centering 
and tolerancing in the design of analog filters, and it turns out 
that this method is, also very well suited for discrete optimization 
of digital filters. 

The reasons for choosing the GA algorithm prior to gradient 
search are as follows. 

Min-max criteria usually used in filter design applications 
are not differentiable and therefore principally not suitable 
for gradient algorithms. 
Many functions that appear in real design problems are 
complicated and “ill-behaved” (e.g. corrupted by noise). 
This also makes it difficult to use ordinary optimization 
methods. 
In most filter design applications, the main concern is to 
find discrete points inside the set of acceptability. The 
Hessian, however, and the corresponding quadratic from 
are determined from the very local behavior of F(x) in the 
vicinity of the continuous solution, and are not necessarily 
a good approximation to the set of acceptability. The GA 
algorithm, on the other hand, can adapt a Gaussian for 
maximum hitting probability to a set of any shape and is 
therefore a better springboard for the discrete search. 
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