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Polyphase  Filter  Banks  Using Wave  Digital  Filters 

LARS TAXEN 

Abstract-The branch filters in  a  digital  polyphase  network  can  be de- 
signed  either as FIR filters by decomposing the impulse  response of an 
FIR low-pass prototype filter, or as o r d i i  IIR filters by the synthesis 
method of Bellanger.  The use of all-pass  networks  has hitherto been 
considered  unfeasible  because of the  assdciated  computational difficul- 
ties involved in the  design of filter  banks  with  many  branches. 

The  purpose of this paper is to demonstrate  that it is indeed  possible 
to design  the  branch  filters as all-pass-low-pass sections without the 
need of a prototype filter. Moreover, these sections can  be  realized as 
wave  digital filters,  which give improved  properties  over the other de- 
signs with  respect to hardware  requirements,  group delay, sensitivity, 
dynamics  and limit cycles. Examples,  including the design of the prac- 
tically  important 60-channel filter bank for the  transmultiplexer,  are 
given. 

I 
I. INTRODUCTION 

N certain digital signal  processing areas such as sample rate 
alteration and FDM-TDM conversion by  the transmulti- 

plexer, a special type of digital low-pass filter based on phase 
shifting has been used. This is the so-called polyphase net- 
work, which was first introduced  by Bellanger [l]  , [2] and 
further developed by Vary [ 101. The sampling frequency of 
this device  is twice the  cutoff  frequency  of  the  filter, which 
means that  the signal  processing is done  at  the lowest possible 
rate.  Thus,  the overall computation rate will be minimized, 
which is  a necessity for  the  60-channel FDM-TDM conversion. 

The design of  the polyphase network has hitherto been 
based on  the special properties of digital signal processing, 
such as the possibility of directly realizing a transfer function. 
It is, however, well known  that analog filtering techniques are 
to be preferred in  many instances also in digital filtering in or- 
der to reduce, for example, sensitivity, which has implications 
on word length and noise. Unfortunately, the phase shifter 
cannot be used for demanding analog filtering purposes be- 
cause of  the stringent tolerance requirements on  the network 
components  and, as a consequence, this problem has not re- 
ceived much  attention  (other  than  for  the special  case of SSB 
signal generation). Hence, there is no straightforward way to  
apply analog filtering techniques in this  context. 

In this paper we  will thus be concerned with  the problems 
of designing a digital polyphase network utilizing the analog 
filtering concepts developed for digital filtering, and in particu- 
lar that of wave digital (WD) filters [3] . The main difficulty 
here is to find a suitable approximation procedure that works 
in practice for the 60-channel transmultiplexer, which is the 
most  important application in  the telecommunication indus- 
try.  The problem is solved by approximating the phase re- 
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Fig. 1. Low-pass  polyphase  network.  Arrows denote sample  rate de- 
crease and increase,  respectively. 

sponse of  first-order all-pass sections and cascading these sec- 
tions  with suitable low-pass filters. It will be demonstrated  by 
examples that such an approach has definite advantages over 
the previously published design methods. 

11. PROBLEM  FORMULATION 

The polyphase network  in Fig. 1 realizes the digital low-pass 
filter H O  given by 

z = eie -71 < 8 < n, 8 = 2nf/fs 

0, = a/N = cutoff frequency f ,  = f s / 2 N  (2.1) 

with f s  = the sampling frequency of H(2) and N = the  number 
of branches. 

Alternatively, we may write (see the Appendix) 

Hm(z) = zmIN - W$' H(z1lNWA) 
1 N - 1  

N I = O  

w - -i(2n/N) N - e  

z = ZN = eiw -71 < o < 71, o = 21rfNIf~.  (2.2) 

Furthermore,  the impulse responses of H ( 2 )  and Hm(z) are 
connected by 

h&) = h(nN+ rn) (2.3) 

which means that the  branch filters Hm(z)  are working N 
times slower than HQ. Thus, the overall computation rate is 
kept at a minimum. 

When  designing the polyphase network,  the first step is usu- 
ally to compute  a low-pass FIR  or  IIR  prototype  filter H(2) 
by standard  methods such as the Remez algorithm [7] for  FIR 
filters or the bilinear transformation  of  an analog reference fd- 
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ter  for  IIR filters. The branch filters H,,,(z) are then derived 
in some manner from  the  prototype filter. 

For  the  FIR case, we  can directly determine &,(z) from 
{h(n)} by choosing 

k,(n) = k ( m +  m) 

for n = 0, 1, * * * , K ,  K = degree of H(Z) (2.4) 

which will yield the desired H(Z). It is, however, difficult to 
design channel-bank filters for  the  60-channel transmultiplexer 
in this way because H(2) will  have a large number of coeffi- 
cients (2000-4000), all of which must be determined by  the 
approximation algorithm. Other disadvantages are that more 
hardware will be needed and the group delay will be greater 
compared with corresponding IIR filters. 

For  IIR filters, Bellanger [2] has suggested a synthesis pro- 
cedure to directly compute H,,,(z) from H Q ,  giving 

Hrn (z) = Pm @)/e (z)  (2.5) 
which means that all filters have the ,same denominator.  The 
realization is done either in  the direct form or, as in the  trans- 
multiplexer, by cascading an all-pole recursive filter with  a 
symmetric FIR  filter, corresponding to  l/Q(z) and P,,,(z), re- 
spectively. The symmetry is then utilized to reduce the neces- 
sary hardware. 

Both of these realizations have certain disadvantages. First 
of all, it is well known that the direct form is  very  sensitive to 
changes in filter coefficient values and hence must be realized 
with high precision. Second, in the transmultiplexer case, the 
magnitudes of P,(z) and Q(z) are heavily attenuated (>40 dB) 
towards the band edge, which means that flat passbands are 
achieved through compensation. Such a  structure  has bad 
internal dynamics (i.e., the signal levef varies considerably 
throughout  the filter). Thus,  the signal has to be represented 
by many bits  in order to avoid inforrpation loss. For  the  60- 
channel transmultiplexer filter,  for example, Bellanger uses 16 
bits [l] . Finally, since  all filters have the same denominator, 
all  degrees of freedom have obviously not  beenused in the de- 
sign, and it should be possible to use for example filters of  less 
order if the denominators are allowed to differ. 

Hence, it would be desirable to use other  structures, and in 
particular WD filters, which are  derived from resistively termi- 
nated lossless and passive analog reference filters. It has been 
verified by numerous contributions that WD filters have  very 
good sensitivity and dynamic properties  and,  in  addition,  limit 
cycles can be suppressed [4]. 

There are, however, certain difficulties involved with  the use 
of such filters in this  context.  The analog reference filter 
might in principle be found by taking the transfer function 
H,,, (z) achieved from the Bellanger method and perform an in- 
verse bilinear transform to get the analog transfer function 
Hm(s). In order to realize H,,,(s) by passive circuits, certain 
conditions  must be fulfied for  the poles and zeros of H ,  (s). 
Ladder filters, for example, require all transmission zeros to be 
in the  left half of the s-plane. It is not very likely that  the 
polyphase network can be made up from such networks  only 
because of the stringent phase requirements. However, if 
Hm(s) has transmission zeros in  the right half-plane, these 

must have corresponding poles (for all-pass sections) or zeros 
(for quadruple zero sections) in the left-half plane. It turns 
out  that these conditions are  generally not fulfilled by the 
transformed Hm(z). Moreover, the problem of doing a  synthe- 
sis (that is, finding the  component values) from Hm(s) still 
remains. 

Hence, we would like to find another design procedure for 
WD filters in this  context  or,  for  that  matter, any digital filter 
based on passive reference filters, and in  the  next section an 
approximation procedure is  given that makes it possible to de- 
sign Hm (z) as WD all-pass-Iow-pass sections. 

111. METHOD OF COMPUTATION 
If (2.2)  is evaluated along the  unit circle, we  get 

1v I = O  

When H ( Z )  is an ideal filter, i.e., 

(3.1) becomes 

If  we only require that H(2)  is band-limited to 
sufficient if 

H,, , (e iw)/Hk(eiw)=  , iw(m-k/N) 

-rr<w<n, k,m=O 

which means that 

e the difference in phase response between Hm and H k  shall 
be linear in w, 

0 IhmI=1Hkl .  

With all-pass sections, the second condition is automatically 
fulfilled, and only the phase requirements have to be approxi- 
mated. However, to our knowledge, there are no explicit 
methods available for  this  type of approximation, although 
some related work has been done in the design of all-pass  sec- 
tions  for  the  quadrature  modulator (see, for example, [ 5 ] ) .  
Thus, we  are confined to ordinary optimization  methods  for 
the  approximation. 

This approach has certain difficulties. First of all, we have 
to determine the order and form (complex or real  poles) of the 
all-pass sections, as  well  as appropriate starting values for  the 
parameters. It is then, of course, desirable to keep  the  order 
of the all-pass sections as low as  possible.  An investigation 
shows that sections with real poles in  the interval Re(z) E {- 1, 
0} are probably the best choice. This means that 
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where d m )  is the number of sections in the  mth branch and 
ai”) is the singularity of the  rth section in that branch. 

Furthermore, since the phase difference between any  two 
digital transfer functions  with real poles at o = a is an integer 
times a ,  and  the desired phase difference at  that frequency is 
an integer times a/N, it is clear that  the  approximation  cannot 
be carried all the way to o = a. The  effect of this will be at- 
tenuation dips in H ( 2 )  around  the frequencies 

6 = 6, + 12a/N I integer, 1 < I  < N/2. 

At those frequencies, the magnitude of (2.1) reduces to 

when H,(z) are all-pass networks. This expression decreases 
as I increases, which means that  the attenuation  dips will be 
less toward higher frequencies [see  also  Fig.  8(a)] . 

In some instances, these dips will not be severe. This is the 
case, for example, if the requirements are stated in a weighted 
integral form as in the CCITT requirements for  the channel- 
bank filter. In general,’ though,  the  attenuation  must be above 
a certain level at all frequencies in the  stopband. 

In such cases, the  attenuation dips can be filtered out by 
suitable lowpass filters in cascade with  the all-pass sections. If 
these low-pass filters are made identical for all branches, the 
phase difference will not be affected. This also has the advan- 
tage that only  one low-pass filter has to be designed, and thus 
more effort  can  be  spent  in optimizing that design. 

Thus, we will write H ,  (z) as 

H, (z) = HLP(2) H,AP(Z). (3.6) 

It  turns  out  that the LP filter can  be  designed almost inde- 
pendently from the all-pass sections. For the high stopband 
attenuations we are interested in  (>60 dB), the passband dis- 
tortion  from  the all-pass sections is negligible. Furthermore, as 
can be derived from (2.2), H,(z) andH(2) will  have approxi- 
mately the same response in the baseband (that is, 0 < 6 < 
a/N) since the aliasing effects will be very  small. Thus, the LP 
filter can be designed to meet  the requirements in this fre- 
quency  band, while the all-pass sections will take care of  the 
rest of the  stopband. 

When designing the  60-channel filter bank for  the  trans- 
multiplexer,  another difficulty emerges. This bank has 128 
branches and, in principle, all singularities of the filters are de- 
signable. Hence, the  optimization  method  must handle a large 
number of variables (300-SOO), which is numerically difficult. 
However,  since a corresponding prototype filter H(2) would 
have a  much smaller number of designable parameters, it should 
be  possible to find  a parametric representation of the  filter 
bank variables. In  other words, there should be some form of 
interdependence among those variables. Now the difference in 
phase between two consecutive filters will  be  very  small for 
large N (in fact, < a/N for 0 4 o < a), which means that  the 
pole positions will change very little. This suggests that  it 
would be  possible to select certain filters for  the  optimization 
and use these as “pivot” filters. The values of the poles in  the 
other sections are then  found by interpolation between the 

poles of the pivot filters. It has been found  that this proce- 
dure works well in practice. 

Since the  optimization is carried out  on  the phase response 
in the baseband, we have no direct control of the magnitude 
response of H(2) in the whole of the interval 0 < 6 < a. To 
check this would require a certain number (10-20) of fre- 
quency points in each basic frequency band of width  2a/N, 
which means a prohibitive number of points in the  60-channel 
case  since there are 64 such bands. However, due to the  prop- 
erties of (2.1) mentioned earlier, the lowest stopband  attenua- 
tion  of H(z) can be expected in the bands adjacent to the base- 
band. This makes it unnecessary to check every frequency 
band during the progress of the  optimization,  but  the final so- 
lution, of course, has to be examined more carefully. 

I t  would also in principle be  possible to optimize the magni- 
tude response directly with the pivot filter poles as  variables. 
This, however, requires a lot more computational  effort, since 
all 128 filters must be known before H(Z)  can be evaluated. It 
also turns  out that  the numerical problems are more severe 
with  this procedure. 

Finally, a remark about  the group delay. For  the  transmulti- 
plexer, it is important to have a low group delay, especially at 
low frequencies. In  the Appendix it is shown that  the group 
delay for H ( 2 )  is approximately equal to  that df H, (z) .  Thus, 
if H,(z) is  designed to have a low group delay (which means, 
for example, a low order), H(2)  will  also  have this property. 

IV. EXAMPLES 

Two filters for  the transmultiplexer have been calculated 
with  the procedure above. The first one is a low-pass filter for 
a  four-channel transmultiplexer with  an overall sampling fre- 
quency of 32 kHz. The eight filters in the filter bank  work at 
4 kHz. For comparison, this bank has also been computed 
with the Bellanger method in which the all-pole filter l/Q(z) 
was designed as cascaded second-order sections. 

The first step in the design  is to find  a suitable low-pass fil- 
ter HLp(z) by  the standard bilinear transformation. One pos- 
sible choice is a fourth-degree filter with one finite frequency 
attenuation pole. For  the all-pass filters, three  first-order sec- 
tions were found sufficient, i.e.,R(,) = 3  for all m. It is  possi- 
ble that the high-number channels could do with  only two 
all-pass sections, since they have a smaller  phase shift. This, 
however, has not been investigated. The poles (altogether 24) 
were then optimized to meet the phase requirements in the 
range 0 < f < f p  where f p  is an adjustable frequency param- 
eter. By changing fp, a tradeoff between requirements on 
HLp(z) and Hhp(z) is achieved, since a smaller fp gives a  bet- 
ter phase approximation. On the  other  hand,  a wider inter- 
val then has to be covered by IfLp@). In  this  case,fp was 
1.85 kHz. 

The  Fletcher  method [6] was used throughout  the optimiza- 
tion,  and  the  computations were carried out with  an internally 
developed program using  DINAP [8] as a subprogram for  the 
digital circuit analysis. 

In Fig. 2,  the result of the Bellanger method is shown, and 
in Fig. 3, that of the WD design. The Bellanger filters are ob- 
viously more sensitive to coefficient truncation. Whereas  Bel- 
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ATTENUATION C DB > GROUP  DELAY CMS> 

1 J .  
.OO 2.00  4.88  6.00  8.80  10.80  12.80  14.88  16.80 

FREOUENCY < KHZ > 

Fig. 2. Response  of  four-channel  transmultiplexer  fiiter designed by 
the Bellanger method. The coefficients of the filter in one channel 
are  truncated to: - = 16 bits, - - - = 12 bits,. . . . = 10 bits. 

.88 .25 .58 .75 I .OO ! .25 1.50 I .75 2.80 
FREQUENCY CKHZ) 

Fig. 4. Group delay of four-channel  transmultiplexer  filter: -_ - WD filter, - - - = Bellanger filter. 
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1 1. 
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Fig. 3. Response  of  four-channel  transmultiplexer  filter  with WD all- 
pass-low-pass sections. The coefficients  of the filter in  one channel 
are  truncated to: - = 16 and 12 bits, . . . . = 10 bits. 

langer needs 16 bits to hold  a 60 dB stopband  attenuation,  the 
WD design needs only 8 to  10 bits. Also, the group delay is 
considerably better  for  the WD design (Fig. 4). 

One  possible WD realization is shown in  Fig. 5 , where the all- 
pass sections are  realized as three-port circulators [3] . The 
hardware requirement of this  solution as compared with  that 
of  Bellanger (utilizing the symmetry of the  FIR filter) is the 
following. 

WD 

LP AP Bellanger 

Multipliers 48 24  108 
Adders 160 12 104 
Delays 40 24 108 

It can  be  seen that the WD design needs less hardware and, 
since most of this is  used  in the LP filters, the hardware can be 
further reduced if the low-pass filters are not necessary or can 
be of a smaller order. It should also  be kept  in mind that  the 
multipliers of the WD low-pass filter can  be  realized with shift 
and  add  only, due to the low sensitivity of that fiter. 

Fig. 5 .  Realization  of  a WD low-pass-&-pass branch. 

TABLE I 
POLE POSITIONS FOR THE PIVOT FILTERS 

Pole Positlons for the Pivot F i l t e r s  

F i  I ter number 

0 

I8 

36 

54 

73 

91 

I a9 

127 

I 

-.8293 

-.8716 

- ,9966 

- ,9362 

-.9618 

- . S I 9  

-.9969 

- ,9999 

Section number 

2 

- 5066 

-.5541 

- ,6036 

- 6510 

-.6988 

-. 7405 

-. 7808 

-.8278 

3 

-. 1547 

-.2014 

-.2471 

- ,2963 

-.3501 

- .4028 

- ,4543 

-.5010 

4 

- ,803941 

- ,807574 

-.01795 

- ,03254 

-.E5410 

-.E8871 

- . I148 

- . I580 

The second example is a similar fiter for  the  60-channel fil- 
ter bank. It consists of 128 branch filters with  the previous 
low-pass filter and four all-pass sections in each branch. As 
pivot fdters were chosen filters 0, 18,36,54,73,91, 109,  and 
127, and all poles except  the one nearest z = - 1 were taken as 
variables. The optimization usually converged  very quickly 
(typically in less than  400  function evaluations), and resulted 
in the pole positions summarized in Table I  for f equal to 1.70 
kHz. The remaining poles were then  interpolated  from these 
values. 

The resulting frequency response  is  given in Fig. 6. As can 
be seen, the  attenuation of this bank is  as good or better  than 
that of the  four-channel filter bank. This is  due to the  fact 
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ATTENUATION C DB > ATTENUATION C OB 3 
I08.0 

0 0 . 0  - 
80.0  - 
70 .8  - 
6 0 . 0  - 
50.0  - 

40.0 - 
38.0 - 

20.8 - 

18.0 - 

.00  2.00 4.00 6.88  e.00 $0.00 12.00 14.88 18.88 
FREOUENCY C KHZ 3 

Fig. 6. Response of 60-channel transmultiplexer fiter with four WD 
all-pass sections. All coefficients are  truncated to: -= 12 bits, - - - -  - 10 bits,. . e a = 8 bits. 

QROUP  DELAY C MS > 
0 . 0  

5 .0  

4 .0  

3 . 0  

2 . 8  

s: I I 

I 
.00 .25 .50 .75  I .00 I .26 I .58 1.75 2.00 

FREOUENCY C KM > 

Fig. 7. Group delay of 60-channel transmultiplexer  filter. 

that  the only real difference between the  two cases is that  the 
phase difference at w = n is (1 - 1/128)ninsteadof(l - 1/8)n. 
Thus,  a  somewhat wider  phase difference has to  be approxi- 
mated in the 60-channel case. In Fig. 7, the group delay is 
depicted. 

If the number of all-pass sections is reduced to three, we wiU 
get the response of Fig. 8. The increase in  attenuation  towards 
higher frequencies  can be clearly seen, and the effect of remov- 
ing the LP filter is also demonstrated.  The ripple in  the pass- 
band  and the  stopband  attenuation in the  frequency  band  next 
to  the passband are almost  completely  determined  by the LP 
filter, as mentioned earlier. The resulting response without  the 
LP filter might be sufficient for  the CCITT requirements, but 
this question  has not been  thoroughly settled yet. 

These filters can be  realized with  only 10 bits precision in 
fured-point arithmetic. This  implies, e.g., that if the signal re- 
quires a  representation of 16 bits, a  standard 16 X 16 bit mul- 
tiplier could be  used  if the transmultiplexer is built around  a 
central processing unit. 

V. CONCLUSION 
The design procedure  presented is suitable for designing  digi- 

tal low-pass filters as polyphase  networks  in  which the branch 

100.0 r 

08.0 - 
88.8 - 
70 .8  - 
80.0 - 
50.0 - 

48.0 - 
30.0 - 
20.0 - 

421 

.E3 4.00 8.00 12.80 18.00 20.00 24.00 28.00  32.80 
FREOUENCY < KHz 3 

r 
ATTENUATION C DB > 

8.0 - 
7 .0  - 
8.a - 
6 .8  - 
4 . 8  - 
3.8 - 

2.e I .a t 
I 

1 I 

.m .s0 I .m I .a 2.- 2.58 
FREWENCV C U M  > 

@) 
Fig. 8. Response of 60-channel  transmultiplexer  filter with three all- 

pass sections: - = LP filter and  all-pass sections, - - - = all-pass  sec- 
tions only. (a) Stopband  response. (b) Passband  response. 

filters 'are  realized by low-pass filters in cascade with all-pass 
sections. Since the starting point is not a prototype filter 
whose transfer function is to be synthesized, we cannot design 
filters with arbitrarily prescribed stopbands as in [2] . Due to 
this and  the  damping effects of  (2.1), there is  usually an excess 
of attenuation  towards higher frequencies. This indicates that 
it  should be  possible to  improve the design further  with  more 
sophisticated optimization  techniques. An interesting problem 
in this context is to find out  just  what conditions  must be ful- 
filled in order for  the polyphase  network to realize arbitrary 
low-pass transfer functions. 

The  main advantage with  this  method is the possibility of 
realizing the branch filters as WD filters, which gives a  mini- 
mum  amount of hardware,  better coefficient sensitivities  (and 
thus  better noise properties), and  a  lower  order of the  net- 
works involved. The success of  the  procedure is due to  the 
fact  that  the low-pass fiters are independently designed by 
standard WD design techniques, while the all-pass sections can 
be approximated  in the  z-domain  and still be  realized  as WD 
filters. There still remain the problems  of finding a direct syn- 
thesis method  and of whether there are structures  with even 
better properties for  the  polyphase  network. 
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APPENDIX 
A. The Transfer Function of   H(z)  

Consider the transfer functions H(Z) and Hm(z) and let  the 
impulse responses be (h(n)} and {h,(n)}, respectively. Sup- 
pose these sequences are related by 

h , ( n ) = h ( n N t m )  n = 0 , 1 ; . -  

m = O , l ; . * , N -  1.  (A-1) 

To express Hm (z) in H(Z) ,  we  begin by taking the  z-transform 
of (A.1): 

H m ( z ) = ~ h m ( n ) z - n = ~ h ( n N t m ) z - n = { n N + m = k }  
n n 

= ckh(k)z-[(k-m)lNl 
k 

where 

( 1  if k = n N t m  
ck = 1 

0 otherwise. 

Now it is known [9] that 

1 if r = M .  

0 otherwise 

Putting Y = k - m gives 

1 if ( k - m ) = n N ,   k = n N t m  

0 otherwise. 

Thus, we  have 

To see that (A.4) realizes (2.1), we form  the sum 

m=O m=O 

- Whm H(ZWh) 
1 N - 1  

N I = O  

N -  1 
= H(ZW&) * -  w p  1 N - 1  

z=o N m=O 

= H(ZW$) 1 -+ 0 =HQ.  

B. The Group Delay of H(Z) 

that there are no approximation errors, we have from (3.4) 
Let CP,(W) be  the phase  response  of Hm(eiw).  If  we  assume 

If we use this  in (2.1) and consider the baseband (181 < r / N )  
only, we  will  get 

H(eie)  = ,-iOm . H (eiON 
N - 1  

m )  
m =O 

m =O 
L, 

Thus, p(8) = Pk(8N) - 8k = po(f3N), which means that the 
group delay of H(2) is approximately equal to that of Ho (2). 
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