
Date

1997-10-25
Rev No

PB2 UAB/K-96:061
File

ERICSSON g
Prepared

UAB/K/U Lars Taxen
Approved

Title

A Conceptual Framework for Development of Complex Systems

Summary

This PM describes a design support framework for developing high-quality teleco
systems on time. Best design practice, black-box product structuring, delivery driven
project planning, tailor made processes, organization of teams and information han-
dling systems are combined into a unified whole.

The main benefit of the framework is that it helps to coordinate the efforts of many
people working together. If it is efficiently communicated and endorsed by product-
and system management, the framework can show how everyones particular work
piece contribute to the whole product.

The framework is simple and based on established working practices. The ideas be-
hind it can be applied directly in ongoing projects with a minimum of efforts.

Contents

1 Introduction

2

3

4

5

6

7

8

9

10

11

Best Design Practice

Product Parts Depend on Each Other

Project Planning from Behind

Tailored Processes

Project- and Competence Teams

Handling the Information

Fitting the Parts Together

A scenario

Start now

Some Axioms

2

3

4

6

7

8

9

10

11

12

14

ERICSSON ̂
Document Name

PM
Date

1997-10-25

Page

2(15)

PB2 UAB/K-96:061

-*^

1 Introduction

It is quite obvious that customer demands and new
technologies will change the way we develop sys-
tems. One example is that changing customer re-
quirements force us to carry out development
incrementally. Another example is that the design
processes must be adaptable to local needs at the de-
sign centres.

If this change is going to take place in an ordered
way, we need some strategy to guide us through this
transition. A concept, or framework serves this pur-
pose. To be useful, this framework should have at
least the following properties:

• It must be based on current working practices.

• It must be open to new ways of working.

• It must be simple enough to be communicated
and understood.

In this PM we suggest a framework which we claim
has these properties. It is based on the following
principles:

• Guidelines for "Best design practice" shall be
innate in the framework.

• The basic principles of abstraction and con-
tainment for developing complex systems
should be part of the framework. This means
that the "black-box" design paradigm of the
AXE concept shall be supported. This is
achieved by structuring the product informa-
tion throughout as alternating layers of speci-
fications and implementations together with
their dependencies.

• The project planning should be based on inte-
gration and planned from behind.

• The framework shall not prescribe which
methods, tools and models shall be used in a
particular development project.

• The framework shall be is equally valid for
SW, HW, mechanical and any other type of
implementation technology.

The design processes (methods, activities,
tools, resources etc.) shall be structured to
make it possible to shift the balance between
local adaptation needs and global central con-
trol.

Handling of design- and product information
shall be done in the information system which
is most appropriate for the task. An informa-
tion system architecture shall ensure that the
information systems can cooperate.

It should be possible to organize teams along
competence and projects.

Design practice, product structure, project ex-
ecution, processes, team organization and in-
formation handling shall make up a coherent
whole.

ERICSSON ̂
Document Name

PM
Date

1997-10-25

Page

3(15)
Rev

PB2
No

UAB/K-96:061

2 Best Design Practice

Experience has shown that successful design of
complex systems have some things in common:

• The system must be divided into parts that are
uncoupled. Functions should as far as possi-
ble be implemented orthogonally, that is they
should not interfere with each other. Another
way of stating this is that the execution of one
function should not affect any other function.
These findings are part of a design practice
known as "Axiomatic Design" [1].

• The project must equally well be as uncou-
pled as possible. The implementation of func-
tions must be assigned to subprojects, or
teams, in such a way that the subprojects do
not interfere with each other. This is very im-
portant. There are even indications that some
types of couplings may cause non-convergent
loops between subprojects. In such a case the
project should not even be started [2]. If cou-
plings cannot be avoided, we must at least
know where they are.

• The system design should make use of the
black-box paradigm1, thus supporting the
principles of abstraction and containment.
This means that we alternate between model-
ling a product from the outside and inside. In
the external view, the part interacts with other
parts in some local context. In doing so, we
only model the externally visible properties
of the part, disregarding its internals:

In the inside view, we model the internals of
the product in such a way that its externals re-
main unchanged. Other interacting parts will
then be used. These in turn are modelled from
the outside:

figure 2 An implementations of a black box

In this way we can split a complex syste
into contexts that can be treated more or less
independent of each other.

The dynamics of the market- and technology
situation makes it vital to consider the inter-
actions of a certain context and what implica-
tions they have on the design paradigm [3].

figure 1 A black box in its context

1. This is the design paradigm of AXE, although
it can at times be hard to spot in the documenta-
tion.

ERICSSON
Document Name

PM
Date

1997-10-25

Page

4(15)
Rev

PB2
No

UAB/K-96:061

3 Product Parts Depend on Each
Other

During the development of a complex system, we
need an information model which is expressive
enough for handling purposes, while still being gen-
eral enough to comprise different modelling tech-
niques and technologies. The "composed-of"
product structure used in PRIM / GASK is not suf-
ficient for this purpose. We need an information
model with at least the following properties:

• It shall show the interdependencies between
the functions and parts of the product.

• It shall be general enough to be applicable to
all types of information (SW, HW, docware
and mechanics, etc.)

• It shall be independent of the modelling struc-
ture of particular application domains.

• It shall be compatible with the product struc-
ture of PRIM

One model with these properties is SBDM, Specifi-
cation Based Data Model [4]:

directedTo

specifies -

- consistsOf-i
implementedBy requires

— implements

• configure:

It has the following characteristics:

• It uses "Specifications" and "Implementa-
tions" iteratively, thus reflecting the black-
box design paradigm (see chapter 2). Specifi-
cations specify functions, interfaces and other
relevant characteristics of product parts on ar-
bitrary levels. Functions are related to users
of that functionality by the relation "re-
quires"1.

• Dependencies between product parts can be
traced from requirements via the relations
"implementedBy" and "requires" to any spec-
ification and implementation. Thus, if we
make an update of, say a particular specifica-
tion due to new requirements or a modifica-
tion request, we always know which
implementations and specifications are af-
fected.

• The model does not show how a particular
specification is modelled, or how the corre-
sponding implementation is done. This must
be documented elsewhere, for example by the
mechanisms provided by the design tools.
This is intentional, since we want the model
to be just precise enough to handle complex
design without being burdened with details. It
should not be regarded as a disadvantage.

• Both specifications and implementations
have versions and status, which makes it pos-
sible to assemble configurations and base-
lines.

• The model does not show the layering of the
product, just the dependencies between prod-
uct parts.

The basic constructs in this model is shown in the
entity - relationship model in figure 3. It shows the
ordinary "consistOf" structure of the product, to-
gether with the dependencies between product spec-
ifications and their implementations at arbitrary
product levels.

figure 3 The Specification Based Data Model
1. The most appropriate way of modelling a
function is as really as a relation between two
parts (see chapter 11).

ERICSSON ̂
Document Name

PM
Date

1997-10-25

Page

5(15)
Rev

PB2
No

UAB/K-96:061

There are several advantages associated with SB-
DM. Here are some examples:

• It is possible to define independent design
contexts, which is the key for successful de-
velopment of complex systems (see chapter
6). The implementation work is contained
within specifications to be implemented and
specifications required for the implementa-
tion.

• Validation ("do we do the right thing?") of a
specification is done in the context where the
specification is to be used. In doing so, the
part which is specified is regarded as a black
box:

Validation

Spec "F"

figure 4 Validation of a Specification

Verification ("do we do the thing right?") of
an implementation is done by comparing the
specification with the implementation of that
specification :

Spec "F"

Verification
1

T

implementedBy

requires

Spec "f"

figure 5 Verification of an Implementation

Specification may have alternative imple-
mentations. This is advantageous if we want
to quickly develop a prototype which will lat-
er be replaced. Another occasion is if we want
to replace a hardware implementation in a
certain technology with a more efficient one.

Spec "F"

implementedBy implementedBy

prototype real stuff

figure 6 Alternative implementations

Sourced parts are modelled as specifications:

Spec"F"

I implementedBy

Spec "f" I Sourced Part

figure 7 Sourced parts

More examples can be given. Today, SBDM can be
used as a conceptual framework to structure the vast
amounts of information being produced in an AXE-
project. It is directly applicable in the work with in-
cremental development and improved AM-meth-
ods. Due to its simplicity, it is fairly straightforward
to implement the model in a CM tool.

1. Ellipsoids are used to symbolize implementa-
tions.

ERICSSON
Document Name

PM
Date

1997-10-25

Page

6(15)
Rev

PB2
No

UAB/K-96:061

4 Project Planning from Behind

The order of deliveries within a project shall be
based on end user functionality. What the customer
wants first shall be delivered first, on time. To
achieve this, we must know the dependencies be-
tween user functions and other functions needed to
implement the user functions. In other words, we
must know what has been called the "functional
anatomy" of the product [5]:

Charging) _ SW superv) _ Statistics j

I
(Traffic)

C HW superv) / (commands)

(HW Init) (Load Appl)

(Load OS ")

figured Functional Anatomy

The anatomy can be represented in a dependency
matrix:

/r
Charging
SW superv
Statistics
Traffic
HW superv
HW init
Command
Load Appl
Load OS

O) CD in <o c: £?• rnc: Q. o Q. ^, co 9- :i*

O C/3 55 1— X X O I I

\ 9 Dependencies

Since functions are part of specifications, this ma-
trix shows also the dependencies between specifica-
tions of products providing a function, and products
required to provide that function. For example, a
block implementing HW init requires a block pro-
viding Load OS. This means that SBDM (see chap-

ter 3) is directly applicable. It should also be noted
that the same functional anatomy can be implement-
ed in different product structures, for example ac-
cording to the structures in AXE 105 or AXE 106.

When the dependencies are laid down, it is a
straightforward matter to lay out the project plan ac-
cording to the priorities among functions, their de-
livery times and the amount of work to implement
each function. Different strategies can be used. In
incremental development, complete and testable
user functionality are delivered in steps. In integra-
tion driven development, the system functionality is
gradually built and tested from the bottom up. In
both strategies, the step wise integration and testing
of functions must of course be considered.

Since this procedure is based on dependencies be-
tween specifications, we propose to call it Specifica-
tion Based Planning,SBP.

Today, the SBP procedure can be applied right on,
and the project plan can be implemented in planning
tool such as Autoplan. It is likely that something like
SBP is necessary to handle incremental develop-
ment, since the interactions between and testing of
increments become even more important than in tra-
ditional design.

In the future, tools and method to support SBP
should be developed. A prominent part of this will
be the CM-tool.

Unless we develop the same product the same way
over and over again, it is pointless to prescribe in ad-
vance how the coupling between the development
project and PROPS shall be expressed. This must in-
stead be done sometimes before TG2, presumably
during the feasibility phase. This also means that the
design process cannot state in advance which docu-
ments shall be delivered at which milestone. In-
stead, the design process must provide "connection
points" where the progress according to the project
plan can be coupled to the prescribed PROPS mile-
stones and TG passages. These connection points
are called Status Points in this framework (see chap-
ter 5).

ERICSSON
Document Name

PM
Date

1997-10-25

Page

7(15)
Rev

PB2
No

UAB/K-96:061

•'"",

•"-•••

5 Tailored Processes

Most design processes in use today are monolithic
in nature, which means that they become inflexible.
At the same time there is a great need to adapt the
design process to local needs. This contradiction can
be solved by building adaptability into the design
process from the outset. However, central control
must persist of general features which are common
to all development sites (for example the ABC prod-
uct classification system). Thus the design process
must exhibit both flexibility and stability. T
achieve this we propose a process architecture for
design processes, which is similar to the AM-archi-
tecture. It is comprised of three architectural entities
[6]:

1 A process core, which provides the stability
mechanism. It holds rules, principles, tools
and other resources which are mandatory
within a specified organization (which can
be, but must not be, the entire Ericsson). The
responsibility for this entity is central.

2 Reusable and adaptable process compo-
nents, which provides reusable process prod-
ucts. They comprise all the process
descriptions, work instructions, tools etc.
which are needed to perform a limited and re-
current design task. The quality assurance is
done at Status Points in the module, and these
are also connection points to PROPS. The re-
sponsibility for these entities may be either
central or local. Some examples are given be-
low:

Network Function Modelling ^^^ $

figure 10 A Process Component for
Network Function Modelling

Ideal Object Modelling

D> I > ii ii. i > i11
liiaE &te '"' i>

figure 11 A Process Component for
Software Design

Multi-Chip Module Design

"5S-1 g M

figure 12 A Process Component for
MCM design

3 Tailor made applied processes adapted for a
specific type of product development. The
adaptability is achieved by picking a number
of relevant process components and specialis-
ing them to local needs. The responsibility for
this is local. Experiences found during a par-
ticular project can immediately be fed back to
the process components without the need to
involve central units.

Today, Multi Chip Modules have been designed us-
ing this model with good results. It is also used at
ERA for system and SW design tasks.

In the future, the model should be formalised and
implemented in some database, from which all nec-
essary documentation and support can be generated.

ERICSSON ̂
Document Name

PM
Date

1997-10-25

Page

8(15)
Rev

PB2
No

UAB/K-96:061

6 Project- and Competence Teams

There are at least two aspects that should be consid-
ered when defining teams. One is the definition of
project teams, and the other is how teams may be or-
ganized around competence areas.

Within this framework, the SBDM model (see chap-
ter 3) makes it possible to define design competence
teams for context bounded by specifications to be
implemented and specifications needed for the im-
plementation. The competence needed is deter-
mined by the nature of the context. For example,
different competencies are needed to program
blocks in PLEX than designing an Application Spe-
cific Circuit (ASIC).

These competencies are preferably organized in the
line structure of the company, since they can be re-
garded as a pool of competencies which can be used
in different projects. They should be responsible for
all that is needed to perform a certain task. This
comprises methods, tools, documentation, training,
support and so on. In short, they should be responsi-
ble for and product owner of process components
needed to perform the task.

When a project is organized, project teams may be
set up to take responsibility of an entire user func-
tionality. This function may be comprised of several
design context, where different competencies are
needed. For example, if the function needs new
hardware to be designed and manufactured, compe-
tence from production units are needed in the team.

This is illustrated in figure 13 below, where two
competencies "A" and "B" form a project team
They are contributing with their competencies to
implement a specification for a function "F", which
in turn needs another function "f' to be implement-
ed. This function in turn requires another function
"g", which is already implemented.

Project Team

implementedBy

Process components "A I recluiresI
\c "f"

implementedBy

"B"

Process components "B"

_I
y

requires

figure 13 Competence assignment

This concept has been used in the design of Multi
Chip Modules with good results.

ERICSSON ^
Document Name

PM
Date

1997-10-25

Page

9(15)
Rev

PB2
No

UAB/K-96:061

7 Handling the Information

A fundamental part of the framework is the informa-
tion systems and what functions they provide. There
is a natural tendency for the product owners of infor-
mation systems to expand their domains into areas
which the systems were not really designed for. This
leads to many fruitless discussions of "which system
is the best".

To avoid this, and to assign a role to each system, we
need an architecture which shows the information
systems and how they interact. The services and
functions may be specified without any particular
implementation / information system in mind. By
doing so, we may change information systems while
still maintaining the services.

The services can be grouped into three areas [7]:

• Design environment (DE); functions to sup-
port the daily design work such as file han-
dling, build support etc.

• Management environment (ME); functions to
control all the design information of a com-
plex system during a project. This may be de-
fining baselines and other configurations,
exchanging design information between
teams, supporting traceability, handling in-
formation status etc.

• Common Environment (CE); functions to
support archiving and global exchange of in-
formation.

These environments appear in all areas which are in-
volved in the life cycle of a product.

Provisioning

Plant
Engineering

"Manufacturing

figure 14 Grouping of information handling functions

Examples of information systems in the Design En-
vironment today are ClearCase for SW design and
Mentor CAD systems for HW design. These sys-
tems will also host CAD libraries for specific imple-
mentation technologies. The component data base
COMET does also belong to this domain.

Information systems in the Management Environ-
ment have been scarce. Most systems in the Man-
agement Environment are project unique. The
Ericsson PDL-system is one possible implementa-
tion. PDL is based on a PDM (Product Data Man-
agement) system called Metaphase. Another
possibility is to use ClearCase in this environment
as well.

The APEX system from Rational is built on a con-
cept which is simliar to SBDM. Therefore, it might
very well be the best implementation of the DE and
ME environments.

In the Common Environment we have today PRIM
and GASK

Provisioning

SW : HW
Buildjne

Manuf. | Plant
I Eng.

IC CHMET ")i

DE

ME

CE

^f ^

PDL

figure 15 An example of information systems
implementing information handling functions

} •)
ERICSSON 5

8 Fitting the Parts Together

guidelines tot good design

Notation

Concapt 1 is associated with one and only one Concept 2

Concept 1 is associated with one or many Concept 2

Concept 1 L J Concept 2

Concept 3 resolves the many many-to-many
association between Concept 1 and Concept 2

Concept 1 Concept 2

Concept 1 and Concept 2 are subclasses of
Concept 3 Concept 4 consists ol one or

several Concept 3

figure 16 The parts and their role in the framework

Security Classification

INTERNAL INFORMATION
Dale

1991-10-25
Document Name

PM
No Rev

UAB/K-96:061 PB2
Page

ERICSSON
Document Name

PM
Date

1997-10-25

Page

11(15)
Rev

PB2
No

UAB/K-96:061

9 A scenario

Suppose we are going to develop a fictitious appli-
cation using the AXE 106 AM architecture. Here is
an example of how that would fit in the framework.

In the prestudy, the customer requirements are ana-
lysed and a specification of the application is devel-
oped. This is validated with the customer, and thus
the first context is formed in which the AXE net-
work is modelled as black box (see chapter 2).

figure 17 Specification of AXE Network Functions

In doing so we may use an adapted process module
from FSAD10 (see chapter 5). This module consists
of use-case modelling supported by the Objectory
tools. The specification is stored in the information
system implementing the ME environment (see
chapter 7) using the SBDM model (see chapter 3).

In the feasibility phase, it is decided that the design
base is an existing version of System Modules XSS,
PU's and an AM, AMI. A new AM, AM2, is to be
developed. It is also decided that a modernized ver-
sion of a printed circuit board (PCB) is to be devel-
oped, without changing the functional specification
of the PCB.

This give us a first sketch of the architecture to be
used. The specifications of the SM's are fetched
from the archive. The specification of AM2 is devel-
oped, and the implementation, that is the interaction
between the SM's, is elaborated using another proc-
ess module from FSAD10: distribution of function-
ality. The implementation is stored together with the
specifications of the SM's and the PU's.

figure 18 Implementation of AXE Network Functions

Parallel to that, the implementation of the PCB is
started, using an adapted process module for PCB's
supported by the Mentor CAD system.

Now, we may plan the project using the SBP-meth-
od (see chapter 4). Functions are assigned to subsys-
tems (ANT), blocks (CNT) and units (CAA).
Increments and the order of deliverables are defined
using the specifications and implementations need-
ed. Teams are assigned according to contexts (see
chapter 6). Configuration of specifications and im
plementations are used to maintain consistence be-
tween increments in different progress. This is
communicated through the mechanisms in the infor-
mation system. The specifications and products are
stored in PRIM. The resources needed and the deliv-
erables are collected in the project plan, whose mile-
stone definitions are coupled to tollgates in PROPS.

specification

implementation

specifications

figure 19 The dependency chain

ERICSSON ̂
Document Name

PM
Date

1997-10-25

Page

12(15)
Rev

PB2
No

UAB/K-96:061

10 Start now

The framework can be applied right now. Some ex-
amples:

• The framework supports directly several of
the principles for structuring the unit UAB/K,
AXE 10 Methods, Tools & Training:

— "Process Management on high level".
Supported by the design process archi-
tecture (see chapter 5).

— "Methods generically described to
make it adaptable on local sites (BU/
MLC)". This is also supported by the
design process architecture.

— "Structuring according to Product Are-
as with method, tools and training kept
together". This is supported by the
team organization (see chapter 6).

• The Rational product APEX CMVC (config-
uration managagement - version control) is
(as far as can be judged from a short presen-
tation) directly compatible with the Specifi-
cation Based Data Model model, SBDM (see
chapter 3). This means that there exist a tool
support for the model. This must however be
investigated.

• Incremental design will also benefit from SB-
DM. This model gives a simple interpretation
of baselines and configuration in genera. Fur-
thermore, since the development cycle will be
transversed once for each increment, it makes
sense to organise the design process accord-
ing to the modular approach (see chapter 5).

• The work being done in FRED-FS AD 10
needs to be aligned with the MEDAX prod-
ucts. This can be achieved by identifying
specifications and implementations accord-
ing to the SBDM. For example, an implemen-
tation of network services using FSAD10 will
contain specifications of node functions,
which are the same as Application Module
Service Specifications in MEDAX.

• The AXE 106 product structure has a number
of specification products associated to the or-
dinary product structure. These specification
products correspond to specifications in
SBDM (see chapter 3). Thus, document
classes already exist for these in PRIM.

• The EDPI (Early Design Process Improve-
ment) structure is essentially an attempt to in-
troduce something with the same purpose as
SBDM (my interpretation).

• The VVC concept can easily be included in
the design process, since validation, verifica-
tion and certification can be mapped on
SDBM (see chapter 3).

• Project execution (see chapter 4) is directly
applicable in ongoing projects.

The framework can be applied today with very sim-
ple means. It does not need any sophisticated tools.
Here are some examples:

• The Specification Based Data Model can be
applied by simply grouping the existing de-
sign information in "specifications" and "im-
plementations" and illustrating their
dependencies on a wall chart.

• Spread sheets can be used to specify design
object status vs. mile-stones. These can in
turn be coupled to project delivery times.

• Simple templates and rules can be used for
quality assurance, for example the 1, 2 and 3
classification used by the "bilbesiktningen"
(1 = remark, 2 = renewed inspection, 3 = not
approved).

ERICSSON ̂
Document Name

PM
Date

1997-10-25

Page

13(15)
Rev

PB2
No

UAB/K-96:061

The Specification Based Planning has more
or less been used in CMS-30 [5]. The depend-
encies between functions can be graphically
illustrated with "functional anatomy charts".
Colours can be used to illustrate "readiness"
(green for ready, yellow for on-time, red for
delayed).

figure 20 Functional Anatomy

Process components can be illustrated with
for example FrameMaker, and placed on the
wall in the project room to give a common
view for the project participants:

Network Function Modelling

:s> m m m m

figure 21 A Process Component

ERICSSON ^
Document Name

PM
Date

1997-10-25

Paae

14(15)
Rev

PB2
No

UAB/K-96:061

11 Some Axioms

Any concept about how design is to be carried out,
needs to be based on some assumptions. These
might be called axioms, since they cannot be proven
true or false. They will play the role of pathfinders
for elaborating the concept, and can only be validat-

"~ ed in practical design work.

Some axioms for this framework are:

Functions are associations between parts in a
context. Referring to functions this way means that:

• there is always at least two parties involved in
a function description.

• it is the characteristics of the providing part of
the function that determines the set of possi-
ble functions.

• it is the context that determines which of the
possible functions is valid.

In our daily experience, this is quite obvious. A
book can be read or placed under a tilted table. A
torch can light a room or be a symbol of the Olympic
games. When designing artefacts like AXE with
particular functions in mind, this is not very obvi-

,-. ous. However, regarding functions as relations has
some very definite advantages:

• We have to consider all parts which the func-
tion relate. The tendency to "zoom in" on the
design and forget about the part using the
function will be less.

• We have to model all relevant characteristics
of these parts in the context. No more "we
forgot about the capacity..."

• We have to define the context. The chance
that we will forget some important aspect will
then be less.

Requirements are not specifications. Very often
we mix up requirements with specifications. W
may very well require that the outlet in the wall will
provide 12 Voks, but the specification of the outlet
is nevertheless 220 Volts. Requirements may be di-
rected to parts having different specifications, and

matched for compliances. When a part exist, its
specification exists as long as the part exist, regard-
less of what requirements were put on it.

Flexibility is grounded in stability. In all flexible
systems, there is some very stable structure. This
goes for living organisms based on DNA as well as
market economies based on regulations. In the AXE
system, we have adopted this viewpoint1. The same
thinking should be applied to processes and tools.
The proposed process architecture in this PM is one
attempt to do that.

The model of a system is determined by interac-
tions with its context. Every model of a system we
come up with is an abstraction of reality. It starts
somewhere and ends somewhere. The interactions
between the system and its relevant context deter-
mine which aspects are modelled and which are not,
both in the system and the context. For example, re-
quirements will influence the system, but the system
will also influence the requirements, as when a cus-
tomer changes his mind when he sees the first pro-
totype of the system.

Methods and tools out of their natural contexts
are useless. We may use a hammer on nails, but it is
useless when it comes to writing. The same is valid
for methods and tools. We should only use them in
their natural context. For example, it is not appropri-
ate to use one information handling system for all
purposes.

Design support should focus on the needs of the
designer This means that tools, methods, training,
information handling support etc. should be deliv-
ered in packages, optimized to provide a solution to
a certain, well defined design task. This is the idea
behind the process component concept. Simply
dumping a pile of tools and a process manual on the
designers desk is not sufficient any more.

1. The ABC classification is one example of a
very stable structure in AXE.

^g0> Document Name Page

ERICSSON $ PM 15(15)
Date Rev No

1997-10-25 PB2 UAB/K-96:061

References

[1] N. P. Suh: The Principels of Design,
Oxford University Press, 1990.

[2] Killander A.J. "Concurrent Engi-
neering Requires UncoupledCon-
cepts and Projects", Proceedings of
the ISPE International Conference
on Concurrent Engineering, CE95,
August 22-25, 1995, McLean, Vir-
ginia, USA.

[3] Taxen L. E, "The Dialectical Ap-
proach to System Design", Proceed-
ings of Integrated Design and
Process Technology, Austin 1995.

[4] Gandhi, and Robertson, 1995,"SD-
BM as a Model for Codesign Data"
in "Computer Aided Software/Hard-
ware Engineering," IEEE Press, Pis-
cataway.

[5] J. Jarkvik, L. Kylberg et al"On suc-
ceeding", EN/LZT 123 1987

[6] H95 1639: System Design Process
Basics

,-. [7] F95 2073: Arkitektur och principer
for informationssystem i AXE-N

•""••

