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Stochastic Optim ization in System  Design 
GREGOR KJELLSTRijM AND LARS TAXfiN 

A bstruct- The nonlinear optimization problem and statistical design 
problem can both be formulated as a region search problem. In this paper, 
we present a stochastic optimization process, suitable for optimizing func- 
tions of a certain measure over generalized regions in R". Conditions for 
an optimal process are discussed, and examples of a wide range of different 

optimization problems are given. These include the optimization of con- 
strained, discontinuous and random functions in both discrete and continu- 
ous variable space. Design centering and tolerancing of large size systems 
subject to environmental disturbances are also treated. 

I. INTRODUCTION 

D URING THE LAST decades, optimization has be- 
come a basic tool in system design, and a number of 

highly efficient optimization algorithms have been devel- 
oped. However, most of these methods assume some inher- 
ent property of the objective function to work satisfacto- 
rily. For example, in order to utilize gradients or difference 
quotients, the objective function must be deterministic, i.e., 
not subject to random variations. Other assumed properties 
may be linearity or continuity. If the nature of the objec- 
tive function does not correspond to the algorithm, one 
usually has to reformulate the original task. Examples of 
this are the application of iterative linear programming 
techniques to optimize nonlinear functions [1] or the trans- 
formation of a constrained problem into an unconstrained 
one with the aid of penalty functions [2]. 
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In this paper we are concerned with the problem of 
finding an efficient optimization procedure when no partic- 
ular assumption about the nature of the objective function 
is made. This problem was posed back in the late 1960’s 
[9], and the result presented here is a followup and further 
development of earlier works [9], [ 111, [ 131, [ 141, [25]. 

One reason for posing this problem is of course the 
possibility of using the same method without modifications 
on different classes of problems such as constrained or 
unconstrained ones. Another reason is that it may some- 
times be difficult to determine the structure of the objective 
function, i.e., we have some kind of black-box situation. 
Thus in real-time computer-aided tuning or optimization; 
the function value may be affected by noise or measure- 
ment errors. Also, computational errors due to lim ited 
accuracy may be treated as noise, and if the optimization 
method can handle this, it can be expected to work better 
on a computer with small wordlength. Other black-box 
situations can be found in some biological and psychologi- 
cal experiments, where the objective function can only be 
evaluated subjectively. 

Furthermore, in situations like tolerancing and design 
centering of toleranced systems, one typically has to 
evaluate the yield of the system: 

P= /V(x) / 0 
(l-1) 

where V(x) is the, statistical distribution of the system 
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elements and go  is a  region implicitly determined by the 
specification for the system. 

Since it is not possible in general  to evaluate (1.1) 
analytically, various approximate methods have been pro- 
posed. Director [3] replaces &, with a  simplex of interior 
bounding hyperplanes, and  Butler [4] uses a  two- 
dimensional pattern search. Another approach is to con- 
strain P to be  equal  to 1, which means a  worst-case design 
PI. 

These methods work well if the number  of elements is 
small (say less than lo), and  the functions defining e0  are 
well behaved.  However, in practical design tasks, &,, is 
usually nonconvex and the complement of &, may even be  
nonconnected [21]. Moreover, it is not unusual  to have a  
large number  of elements (of the order of 50  or more). In 
this case the optimal yield is almost always less than 1, 
since a  worst-case solution is too expensive (it may .how- 
ever serve as a  good starting point for the further optimiza- 
tion). The  only realistic way to evaluate the integral is then 
by the means of-some Monte Carlo procedure. The  esti; 
mate for P, say P, will then be  a  random variable, since P 
depends on  the generated samples. Thus a  method assum- 
ing deterministic functions cannot be  straightforwardly 
used to optimize a  function of P. In this case, a  different 
approach (such as, e.g., [6], [7], [13], [14], [22]) is to be  
preferred, where Monte Carlo methods are used not only 
to evaluate a  given design, but also to optimize that design. 

In design situations like those above, it turns out that a  
ma jor problem is to localize and in some sense describe the 
usually complicated region @e , def ined by the functional 
mapp ing from the specification space to the element or 
component  space. 

In this paper  we investigate the properties of a  stochastic 
search process, which optimizes certain functions of a  
measure over such regions. The  search is done by sampling 
from a  distribution with maximum dispersion, which means 
that the regions may be  of a  very complicated nature. This 
implies that a  wide variety of function classes can be  
optimized. The  relevance of this approach is demonstrated 
by various examples in different applications. 

In Section II, the basic concepts are given, and  in 
Section III, optimality condit ions for the process are de- 
rived. The  implementation of the process and some ques- 
tions concerning convergence are discussed in Sections IV 
and V, respectively, and  finally, application to nonl inear 
optimization and statistical design (design centering and 
tolerancing) are treated in Sections VI and  VII. 

II. DEFINITIONS AND ASSUMPTIONS 

W e  begin by making some definitions, suitable for the 
black-box situation we are interested in. The  concepts used 
here should be  considered as convenient labels only, and  
need not necessari ly have any physical mean ing. 
%  Specification or output space. 
%C% Specification in Z  (a subset of 2). 
(fx, e4)=Rn+m Component,  or input space. 
(x, y> Random variable of dimension (n + m) 
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and with range in (%, ‘9). 
f: (%,?4)+% Function from (%., %) to % . 
(x, Y)W%% R ea  zaionorsampleof(X,Y)in(%,9). fi t 
ZE% Response point in % , given by z =f( x, y). 
The  problem we are addressing is to man ipulate the black 
box D, defined by 

D={fJ% 8  : designable parameters of D 
such that the quality- or objective function 

C=c(B, q, C: scalar; 4: constraint space 
is optimized under  certain constraints 4, which are def ined 
over 91  in some way. In doing so, the only property we 
assume about D is the ability to return a  function value 
f(x, y) for each input sample (x, y). 

As designable parameters 8, we will take the parameters 
(or moments)  characterizing the distribution function of X, 
i.e., we assume that X=X(e). The  Y distribution is intro- 
duced in order to treat the optimization of random func- 
tions (Section VI), and  we assume that it is known only by 
sampling and that we cannot affect its parameters, i.e., Y is 
nondesignable. The  function f maps the component  space 
(x,9) onto the specification space $5, such that if z= 
f(x, y) ~$8, then the realization (x, y) is said to meet the 
specification. 91  is furthermore al lowed to change accord- 
ing to some independent parameter, in which case the 
optimal 8  will also depend on  that parameter. The  reason 
for this assumption will be  apparent in Section VI. 

Since (x, y) are samples of (X, Y), z will be  samples of 
the random variable f( X, Y), and  by changing 8  under  9, 
we will affect the sampling distribution in 2. Thus by 
examining the outcomes z in ‘55, we can, at least in princi- 
ple, decide which 8  are optimal, i.e., m inimize c(8,Q). 

In a  general  sense, the design process includes not only 
the determination of 8, but also f(x, y), n, and  c(t9,9), 
corresponding to the structure, order, and  “best” criterion, 
respectively. In fact, even 91  is a  designable parameter in 
many cases, since specifications cannot always be  stated 
unambiguously.  However, in this paper  we shall considerf, 
n, c, and  9!1 given and concentrate on  e  only. 

A. Generalized Regions 

The basic problem we will be  concerned with is to 
somehow localize and describe the image of the specifica- 
tion space %  in the component  space (%, 9) as def ined by 

~~=f-‘t~)={(x,Y>:f(x,Y)~~}C(~,~). (2.1) 

It is evident that this region plays a  fundamental  role when 
determining the optimal 0  values. However, we cannot 
hope to gain complete knowledge about @a  other than in 
very simple cases, and  usually this is not necessary. 

To  this end, we will first reformulate our problem slightly. 
Since we cannot affect the Y distribution, it is preferable to 
work in the %  space only. To  achieve this we introduce the 
function q(x) by 

q(x)=Pr{(X,Y)E&&/X=x} (2.2) 
i.e., q(x) is the conditional probability that a  sample (x, y) 
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of (X, Y) will have z=f(x, y)~%, given X=x. 
In many cases the influence of the Y variables is de- 

terministic, in which case 

d-d= 1 
1, X&O 

0, x4&). 
(2.3) 

However, in order to treat also the optimization of random 
functions f(x, Y), we will allow q(x) to take values be- 
tween 0 and 1. 

To get a better picture of this situation, we form a new 
region @ , which we will call a generalized region, in the 
following way: 

Divide the %space in unit cells Ax, with a “mesh” that 
becomes progressively finer as the approximation is im- 
proved. Then define a subregion A&(xi) of each unit cell 
such that 

/ , A&(x jdx=cP(xi)jhxdx (2.4 

i.e., A@(xi) is a region with a volume cp(x,) times that of 
Ax, but otherwise unspecified. 

&! is now taken as the union of all A@(xi): 

@= u A@(xi). (2.5) 

Thus if cp(xi) = 0, no part of the unit cell at xi belongs to a, 
while if cp(xi) = 1, the entire unit cell belongs to @ . It is 
clear that every operation ‘we can perform of @ , is ap- 
proximated by the same operation on &. In this way we 
can still speak of a well-defined region when random 
functions are involved. 

The region @  will occasionally be a very scattered one, 
since each unit cell has one part that belongs to it, and 
another part that does not. It can be thought upon as 
having an “archipelagic” structure, where the amount of 
scattering is determined by q(x). It is evident that design 
problems comprising regions of this structure cannot easily 
be solved with methods assuming some kind of geometrical 
feature, such as for example convexity. 

Bl A Characterization of Generalized Regions 

We are now faced with the problem of characterizing the 
region @  in such a way that we can draw conclusions about 
the optimal values of 8 in different design situations. One 
such characterization could be 

V, = J dx 
& 

p,= xdx/T/, / d 

Ma = [m,(i, j>], 

-(xi-poj)dx/Va. (2.6) 

This would give us information about the center (first-order 

moments p,) and extension (second-order moments M ,) of 
@ . However, in order to carry out the integration, we must 
know &? and, as pointed out earlier, we do not have this 
knowledge in general. One way to evaluate the integrals 
would be by sampling from a uniform distribution that 
encloses &?, but this requires at least some information 
about & Since we do not want to assume such an informa- 
tion, we will choose the following more general characteri- 
zation: 

S*={V(x),P,p*,M*} 

where V(x) is a measure over 4? and 

P= pV(x) J 

p*= xdV(x)/P J & 

M*=[m*(i, j)], m*(i, j)‘J$x,-Pi) 

.(xj-pj)dV(x)/P. (2.7) 

Since the integrals are to be evaluated by sampling, we will 
choose V(x) as a probability function, which means that 

1% dVx =l. ( ) 
Of course there are many possible choices for V(x), and 
this question will be settled next. 

, III. OPTIMAL MEASURES 

When deciding on an optimal measure V(x), we must 
consider the following: 

We have little or no a priori knowledge about @ . 
& can be highly irregular. 
@  may change according to an independent parameter 
since we aIlow ‘33 to change. 

In this situation, it is evident that one property of V(x) 
must be a high dispersion, or ability to “look” in as many 
areas of the component space as possible. 

In order to compare different choices of V(x) with 
respect to dispersion, we must find a function x(X) that 
somehow quantifies this property. In doing so, we will take 
a similar approach as in [20]. We begin by dividing the 
component space in unit cells as before, and let X be the 
number of cells that a certain distribution covers. In order 
to make the comparison meaningful, we will also put the 
constraint of equal second-order moments on the different 
V(x). 

To this end we define the probability measure {p(xi)} 
from the frequency function u(x) of X: 

p(xi)=pi=u(xi)Ax 

u(x)=dV(x)/dx 

lim  xu(xi)Ax=l. 
Ax-0 i 

(3.1) 

We can now state a number of postulates, that X should 
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fulfill in order to be  a  useful measure of dispersion. These which expresses the volume (unit cell volume times number  
are: of cells) that V(x) covers. W e  then have 

Postulate 1: X(X) is a  function of {p,} only. 
Postulate 2: X(X)> 1  (since at least one  cell has to be  

covered). 
Postulate 3: If one  or more cells with pi =O is added,  

then x(X) will remain unchanged.  
Postulate 4: X(X) is an  increasing function of some 

integer n  if pi = l/n or 0  for all i. 

$(X)=Axexp - zu(xi)logu(xi)Ax 
[ i 

-logAxzv(xi)Ax 
i I 

W e  will need a  fifth postulate that enables us to handle two 
distributions X and Y that may depend on  each other. 
Thus if X and Y are independent,  it is reasonable that the 
dispersion measure X(XY) of the combined distribution 
(XY) should be  the product of the individual measures. In 
that case we will have 

=Axexp - xu(xi)logu(x,)Ax-logAx. 
[ i 1 

=expH(x) 

where 

x(xY)=x(x)x(Y). (3.2) 
On  the other hand, if Y is completely determined by X, no  
extra cells will be  covered by Y. This gives 

x(xY)=x(x). (3.3) 
In situations between these extremes, we will use the 

function X(Y/X) as a  measure of the dispersion in Y, 
given X. It is clear that X(XY) must depend on  the 
conditional probabilit ies p( Y =yj /X= xi), for which we 
can also determine the dispersion X(Y/x,). 

As a  definition of x( Y/X) we will choose the geometri- 
cal average of X(Y/x,) (it turns out that if the algebraic 
average is used, all postulates cannot be  fulfilled): 

3-q Y/X)= 7  X( Y/Xi)? (3.4) 

If Y is independent of X, we will get p(yj/xi)=p( yj) and 
thus 

H(X)=-/,&u(x)logu(x)dx. (3.7) 

Thus we want to maximize H(X) (which is called the 
entropy of V(x) in some contexts) with respect to V(x) 
under  the constraints of equal  second-order moments.  This 
problem has already been solved in [8], where it is shown 
that the Gaussian distribution has the highest H(X) of all 
distributions with equal  moments.  Thus we will choose 
u(x) as 

u(x)=(2?r)-“‘2(detM)-“2expQ 

Q= -4(x-p)%-‘(x-p). (3.8) 
In F ig. 1, three different distributions with the same vari- 
ance are depicted. It is evident that the Gaussian distribu- 
tion covers a  wider interval than the others. 

A. Further Optimization of V(x) 

X(Y/X)= lpqYyf=X(Y). (3.5) 

It has been shown in the previous section that the 
Gaussian distribution has the highest value of H when 
compared for equal  second-order moments.  This gives it a  
high ability to discover the structure of &? and adapt to 
possible changes of a. 

W e  must now decide more specifically how to use this 
distribution in connect ion with @ . One  way would be  to fix 
the determinant of M  and to maximize P in S* as def ined 
by (2.7). This is equivalent to maximizing the yield at 
constant tolerance cost in the case of design centering. 
Anderson [23] has treated a  similar problem for symmetric, 
convex regions showing that if the first-order moments of 
V(x) is placed in the center of that region, then the yield 
will be  maximized. This result is however not applicable to 
the general  type of regions we are interested in, and  we 
will, therefore, take a  different approach. 

When  Y depends completely on  % , we have p(yj/xi)= 1 
for some j and  equal  to 0  for all other j. Thus we may put 
X( Y/xi) = 1, since only one cell will be  covered for each 
X-value, and  we get 

X(Y/X)=nlp~=l. 
i 

The extreme cases will be  satisfied if we formulate our fifth 
postulate in the following way: 

Postulate 5  : X(XY)=X(X)X(Y/X). 

It is shown in the Appendix that the only function satisfy- 
ing all postulates is 

X(X)= ~p(xi)-p@,) 

= exp 
[ 

- Tu(xi)Axlog(u(xi)Ax) . (3.6) 
I 1 

W e  would now like to pass on  to cont inuous distributions 
V(x). To do  this we form the function 

Ic/(X).=AxX(X) 

Since we want to use V(x) also for the optimization of 
general  functions, we will focus our attention on  the dual 
problem (dual in the sense of exchanging target function 
and constraints) of maximizing the determinant while 
keeping P, or the yield, constant. In Section VI, it will be  
shown that general  function optimization corresponds to a  
varying @ , and in this case we can expect the convergence 
to be  better with the dual problem. This is of course due to 
the fact that maximizing the determinant of M  is equiva- 
lent to expanding the distribution as much as possible over 
@ , and adjusting it to the shape of &!. 



706 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS,  VOL. CAS-28, NO. 7, JULY 1981 

5.a 

4.0 

3.8 

2.0 

I .0 

-5.0 -3.0 -I .a I .a 3.0 5.0 

(4 
.5 

1 

-5.0 -3.0 -I .a I .0 3.8 5.0 

(W 
.5 

I 

-5.0 -3.0 -I .a I .0 3.0 5.0 

(4 

Fig. 1. Distributions with the same variance. (a) Dispersion=0.210. (b) 
Dispersion=3.46. (c) Dispersion=4.13. 

For the Gaussian distribution, the expression for H(X) 
is [8] 

H=log{(27ie)“det(M)}“2. P-9) 
We can, therefore, choose to maximize either H or the 
determinant of M . More specifically, we will maximize the 
following Lagrange function w.r.t p and {m(i, j)}: 

F(p, h)=log[(2ae)“det(M)]“2+y(P-ol) 

+ 2 Yij( Aij -hjl) C3*lo) 

i>j 

Fig. 2. Distributions with equal hitting probability (=0.3). The square 
marks center of gravity for the second distribution. 

where 

R=M-‘=[Xij], y , yij : Lagrange multipliers. 

The maximizing conditions are derived in the Appendix, 
and they are as follows: 

P’P 
M=cM’, c = constant (3.11) 

where p* and M* are given by 

P*=h-a /4 = kdx) dx/P 

M*=[m:I], mTj = /,‘xi -pi)(xj -pj)u(x) dx/P. 

(3.12) 
It should be pointed out that while these results are theo- 
retically valid only for Gaussian distributions, they may be 
used for other distributions as well, since these can often 
be approximated by Gaussian distributions. This is espe- 
cially true if the number of dimensions is large (due to the 
central lim it theorem). 

The equations in (3.11) can be interpreted in the follow- 
ing way: 

The first-order moments ~1 of the distribution V(x) 
should coincide with the center of gravity p* of the 
“success” sample points, i.e., those samples x E@. 
The second-order moments {m(i, j)} should be pro 
portional to the second-order moments. {m*(i, j)} of 
the same points. 

In essence, this means that V(x) will adapt to the location 
and shape of @  (see Fig. 2.). The question of how to achieve 
this in the most efficient way still remains. 

IV. IMPLEMENTATION 

The process is presently implemented in the following 
way: 

1) M=I,, I, is the unit matrix of order n. 

Q=In Q is given by M=(rQ)(rQ)T 
where r is an adaptable step 
size whose initial value is 1. 
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3) x+p+r.Q-v 

4) f(x, y) is evaluated 
5) If f(x, y)@% then 

r+r*sf 

Go to step 2  
6) If f(x, y)E% then 

r+r.ss 

/J+(l- WJP 
t-x/N, 

AM+(l- l/N,)I, 
+ II. vT/4, 

AQ+(AM)“2 

Q+Q.AQ 

det(Q)+ 1  

Go  to step 2. 

p. is the starting values of the 
first-order moments.  
7  is a  sample from a  Gaussian 
distribution with mean  0  and 
moment  matrix 1,. 0  should be  
read: “takes the value of .” 
A sample from the Gaussian 
distribution V(x) E 92( p, M) 
is taken. 
y is sampled from the Y- 
distribution. 

sf is a  contraction factor (de 
fined below). 

ss is an  expansion factor (de 
fined below), 

p  is updated. 

AM can be  regarded as an  
incremental change of the mo  
ment matrix. 
AQ is def ined by AM = 
AQ- AQT. Numerically, AQ can 
be  found by the Cholesky 
method. 
Q  is updated (and thus indi- 
rectly M). 
Q is normalized such that the 
determinant of Q  equals 1. 

N, and  NM are weighting factors expressing the importance 
of previous samples. If these factors are approaching infin- 
ity, the moments will not be  updated at all, and  if they are 
1, only the last sample will contribute. 

The  updat ing of M could have been done directly by 

M+(l- ~/N,)M+(~-x)(/L-x)~/‘N, 

but the procedure above (which is analytically equivalent) 
has turned out to be  numerically more stable when the 
order n is high and the moment  matrix is ‘heavily skewed. 

The  expansion and contraction factors ss and sf are to be  
determined such that P is kept at a  constant level. This 
means that the average value of det (M) should not change 
during stationary condit ions (p and M do not change).  
Since det(M)=r2”det(QQT) it is expanded with a  factor 
ss2n at each success sample and contracted with the factor 
sf2” at each fail sample. After say S success samples and F 
fail samples the following relation must then be  valid: 

ii, (SSPj, (sf )2n= 1. (4.1) 

51 
Ln ( Det (M388 )/ cet (Mg> 1 

I 
-l-0 .4 -r’Y-TTl , 0 

HIT’ING PRCBCBILI-” P 

Fig. 3. Convergence of the process in a  cylinder. Number  of variables = 6, 
number  of samples=300. x: Weight Np, N, =3. - : Least squares 
fitted 4th degree polynomial. o: Weight NP, NM ~6. ---: Least  squares 
fitted 4th degree polynomial. 

Also 
P=S/(S+F) . (4-2) 

which after some calculation (assuming that ss and sf will 
be  near 1) results in the approximate values 

ss=1.+j3*(1-P) 
sf= l.--p*P. 

The  factor p  determines the rate of contraction and expan- 
sion of the determinant. If it is too large, the process will 
exhibit a  “pulsating” nature, which will disturb the conver- 
gence. On  the other hand, if p  is too small, the process 
becomes inert, and  convergence will slow down. 

V. CONVERGENCE OF THE PROCESS 

One feature of the process described is that its efficiency 
depends on  a  number  of parameters (P, Np, N,, j3, etc.) 
that are difficult to determine theoretically. Because,of this, 
different test environments must be  constructed, in which 
the influence of these factors can be  experimentally studied. 

To  begin with, it is clear that the value of P, or the 
“hitting” probability will greatly affect the convergence of 
the process. Thus if P approaches 1, the process will not be  
able to move at all, and  if P goes to 0, no  samples will hit 
&. One  possible approach to determine the optimal value 
of P, is to consider the concept of useful information [15]. 
If we take the event scheme of hit versus no  hit, and  recall 
that the updat ing of the moments of the process is done 
only at hit, we will have the useful information 

w=-PlogP (5.1) 
in which case the optimal P-value should be  l/e=0.37. 
O ther theoretical studies of the convergence in certain 
special cases also result in (5.1) [9]. 

Experimentally, this can be  tested by for example perfor- 
m ing test runs in order to find out how fast the process 
adapts to the shape of certain regions for different values 
of P. In F ig. 3, the convergence in a  six-dimensional 
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cylinder is shown for Np, N,,, 73 and N,, N,,, =6. On the 
ordinate is depicted the growth of the determinant of M  
for a specified number of samples in each run. This is a 
measure of how well the process has aligned itself along the 
main axis of the cylinder. As can be seen, the optimal value 
of P is between 0.2 and 0.4. 

The significance of the weighting factors Np and N,+, is a 
tradeoff between statistical accuracy (large values) and 
movability of the process (small values). During the initial 
parts of the optimization, the process must be able to move 
quickly from the starting point (possibly along sharp curved 
valleys) to the’vicinity of the optimum. Thus small weight- 
ing factors are preferred. To get significant estimates of /J 
and M , however, the weights must be increased. This can 
be done at regular intervals during the optimization as the 
optimum is approached. It should also be noted that in 
most practical design situations, the element values need 
not be known to a great accuracy, which means relative 
small weights. 

These properties of the process can also be seen in Fig. 
3. The runs with Np, N,, =3 converges faster than those 
with Np, N, =6 for smaller values of P, but when P 
becomes large, the statistical uncertainty has a greater 
impact on these runs. 

Some findings inferred from numerous experiments are: 

The convergence can be maintained even for small 
weights (N, = 2 *n or less and Np even 1; n being the 
number of variables) provided that P is sufficiently small 
(less than 0.4). 
The optimum value of P is somewhere in the neighbor- 
hood of 0.3. 
The factor /3 in the step-size adjustment should be around 
0.05 and decreased as the number of variables increases. 

VI. OPTIMIZATIONOFGENERALFUNCTIONS 

1n nonlinear optimization, one usually has a set of 
system response functions 9, = {r,(x, y), r2(x, y), . . a, 
T/(X, JJ)} and a corresponding set of desired responses 
Q= {d,, d,; . . ,d,}. From these sets, f(x, r) can for exam- 
ple be defined in its simplest forms as 

fb, Y>= m l? hb, y)-4) (64 

or 

f(X, Y)’ E (‘i(X, Y)-di)*- 
i 

(6.2) 

With a general purpose optimization algorithm such as [l] 
or [ 121, f(x, y) is then m inimized. 

In our formulation, we will define the specification ‘2i3 as 
the interval 

cBw= {fb, r>: f(x, Y>+J cz> C, : scalar parameter. 

(6.3) 
Consequently, the @a region is defined by 

~.,={(x,Y>:f(x,Y)<Co}C(~X,~) (6.4) 

which means that &, will now depend on the parameter Cc,. 

Since we assume that X and Y are random variables, 
f( X, Y) will also be a random variable, and we must 
therefore formulate the optimization problem in prob- 
abilistic terms. One obvious formulation is to m inimize the 
average of f( X, Y), but this would require a certain number 
of samples for each evaluation of the objective function. 
Also, since the estimation of the average in itself is a 
random variable, an ordinary m inimization method would 
not work well in this case. 

Therefore, we shall use a formulation suitable for the 
search process described earlier. We will choose 0 as the 
first-order moments of the distribution function V(x) for 
X, and 

M inimize C, w.r.t 8 
under the constraint 9: 
8=(Pr{f(X(B),Y)iC,,}=P=constant). (6.5) 

This means that by decreasing C,, we are contracting the 
&,, region to those parts of the component space where we 
have a high probability of finding low values of f( X, Y). It 
should be noted that if f is a deterministic function, then 
the a,, region will eventually degenerate to the point space 
containing the optimal x point. 

A crucial question is the rate of contraction. If this is 
done too fast, the search process will be “left behind,” and 
if it is done too slowly, the convergence will also be slow. 
From experiments again we have found the following type 
of updating of C, suitable: 

Co +(I- VNc)G +fb, Y)/% (6.6) 
This updating is done only for success samples. If the 
weight Nc is equal to 1, Cc equals the function value of the 
latest success sample, and if N, goes to infinity, there is no 
contraction at all. The.optimal value of Nc has also to be 
found experimentally. 

Example: M inimize 

f,(x)=20- ; (Xi +0.5)*+ 
i=l 

e-15( ;,+g)}. 

(6.7) 
This function has the shape of a tilted bottom of a bottle 
with a small hill in the m iddle. The results are summarized 
in Fig. 4. For comparison, we have included the Fletcher 
algorithm using differentials [12], which is necessary if we 
assume that the gradients cannot be calculated analytically. 

In a situation like this, the statistical optimization com- 
pares favorably with the gradient method, also when the 
function is continuous and differentiable. This is due to the 
fact that the statistical method can “climb over” the hill, 
while the gradient method goes around it, following the 
bottom of the valley. 

If noise is added to the objective function we will get 
curve number 3 of Fig. 4. The function is 

h(xA=hb)+ y (6.8) 
where Y has a Gaussian distribution with mean 0 and 
variance 0.01. The efficiency of the statistical method is but 
little affected, while the gradient method does not work in 
this case without special arrangements. 
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Fig, 4. Test function optimization. I: Quasi-Newton (Fletcher). 2: Stat- 
istical optimization. 3: Statistical optimization with noise. 4: Statistical 
optimization with quant ized variable values (step size=2-3). Weights: 
NP=l,NM=16,NC=16.Allvariables=-l.atstart. 

To see that the method works also on  discontinuous 
functions, the variables are quant ized with a  step of 2-3 
before the function evaluation. This will turn f, into a  
“stair-case” function. It can be  seen that this optimization 
is as fast as the cont inuous one. 

If the sampling is done from a  quant ized version of the 
distribution V(x), we have a  discrete optimization that 
converges as good as the discontinuous optimization in this 
case. However, the best discrete point is seldom found in 
this way. To  this end, the discrete optimization can be  
further developed by a  technique similar to the one de- 
scribed in [16], where the eigenvectors of the gradient- 
optimization Hessian is used to generate linear search 

VII. DESIGN CENTERING AND TOLERANCING 

By design centering and tolerancing we understand the 
process of assigning optimal nominal values and tolerances 
to the elements of a  system according to some objective 
function, which in the most general  case is a  function of 
both the tolerances and the yield of the system [ 131, [ 191, 
[22]. When  doing this, one  has to keep in m ind that the 
system will be  affected by certain operational factors like 
heat, humidity and  aging after the time  of manufacturing. 
The  problems associated with tolerances was recognized a  
long time  ago (see, for example, [24]), but the common 
design procedure by that time  was cut and  try. 

In our approach to this problem, the operational factors 
are represented by the Y-variables, which will now become 
a  stochastic process Y(t) with t E[O, T], where T is the life 
span of the system. W e  can now define cp(x, t) as 

NV Na Fv 
96 2363 1.0050 
34  906 1.0647 
83  1798 1.1247 
43  1265 1.1181 
53  2082 1.0890 
30  959 1.1749 
33  1282 1.0836 
29  887 1.1056 

Nearest point 2.2986 
Steglitz point 0.99713 
Continuous solution 0.877. 

L 
6 
4  
7  
7  

14  
6  

12  
11  

4  

The  fact that many good points are found far away from 
the nearest one  indicates that the search distribution has 
been able to adapt to the typical narrow valley form found 
in Chebyshev optimization of high degree filters. 

directions for the optimal discrete point. 
W e  m ight use the inverse of the moment  matrix M  in the 

cp(x, t)=Pr{sE[O, t]: (X,Y(s))E@O/X=x} (7.1) 

same way. However, search directions can also be  directly 
generated by taking samples from the optimal distribution 
V(x). It is then not necessary to find the eigenvectors of 
the inverse moment  matrix. Also, we may use any defini- 
tion of the objective function in contrast to [16], where the 
L2 norm must be  used. 

As an  example, we have taken example number  3  of 
Steiglitz [17], which is a  digital low-pass filter with 12  
variables. The  same filter has also been treated by Brglez 
[ 181. W e  have used a  denser frequency grid than Brglez 
towards the band edge, since the filter ripples are very 
close there. Using Steiglitz solution as a  comparison, a  
number  of runs with different random number  seed pro- 
duced the following results for a  quantization step of 2-7: 

Max number  of analyses in each run = 3000. 
NV = Number of generated search directions. 
Na=Number of analyses to find the best point in each 

run. 
Fv =The value of the objective function (Fvc 1 means 

an  acceptable solution). 
L=The distance to the best point with the distance to 

the nearest discrete point as unit. 

which expresses the conditional probability that (X, Y(t)) 
will meet the specifications up  to the time  t, given X=x. 
W e  will also assume that &x,0) = 0  or 1, thereby indicat- 
ing that there is no  uncertainty whether a  system meets the 
requirement or not at the time  of manufacturing. 

W e  will now let V(x) represent the statistical distribu- 
tion of the system elements at t =O, and as designable 
parameters 8  we will take the first- and  second-order 
moments of v. The  system requirement is stated in the 
same form as in the previous section. 

Now for the same reasons as before, it is not possible 
directly to optimize the object or cost function as it is 
usually called in this context. However, all cost functions 
have in common that they try to assign as large as possible 
tolerances to the system elements, while keeping all other 
condit ions unchanged.  

W e  shall, therefore, formulate the optimization problem 
in the following way: 

Maximize det (M) w.r.t 8  under  the constraint 9: 

G=Pr{tE[O,T]:f(X(8),Y(t))-cC,} 
= P = constant. (7.2) 
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Fig. 5. (a) Directional filter arrangement.  (b) Filter structures. (c) Stopband response.  _  Low-pass direction -- - 
High-pass direction. (d) Passband responses.  - Original response.  --- Optimized response.  (e) Return loss. _  
Original response A and  B side --- Optimized response A side - - Optimized response B side. (f) Distribution of maximum 
error (sample size 300).  1: Manufactur ing tolerances at start. 2: As 1  with environmental  effects. 3: Design centering only. 4: 
Design centering and  tolerancing. 

This means as before that we will expand the V(x) distri- of V(x) as a  first approximation to the tolerances. Since 
bution as much as possible over the fixed @ ,, region, while the determinant of a  diagonal matrix is the product of the 
keeping the probability of staying in that region constant. diagonal elements, the tolerance cost function m inimized is 

Some remarks are relevant here. F irst, if the toleranced the sum of the logarithm of each individual tolerance. For 
components are independent of each other, the M matrix is other cost functions (like the sum of inverted tolerances) 
gradually made  a  diagonal matrix as the optimization and different cost coefficients, other updat ing formulas 
proceeds. W e  can also use the residual standard deviations similar to (3.11) can be  derived [ 131. 
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TABLE I 

711  

Ll 

CZ 

L3 

c3 

f3 

CL 

L5 

cs 

f5 

_ C6 

L7 

c7 

f7 

C8 

L9 

c9 

F9 

Cl0 

111 

2.9927' 

.1860 

1.8206 

-2879 

6.9518 

-4532 

3.0339 

.09836 

0.2133 

.4363 

1.7252 

.3259 

6.7121 

-3951 

2.4370 

.1516 

8.2804 

.5275 

2.9710 

2. 

tuned F' 

2. 

2. 

tuned F' 

2. 

2. 

tuned F7 

2. 

2. 

tuned F9 

2. 

2. 

2.9927 

.486C 

1.02C6 

.2a79 

6.951e 

.4532 

3.0399 

.09836 

9.2133 

.4363 

1.7252 

.3259 

6.7121 

.3851 

2.4370 

.1516 

a.2804 

.5275 

2.9710 

2. 

tuned F: 

2. 

2. 

tuned F: 

2. 

2. 

tuned F7 

2. 

2. 

tuned F9 

2. 

2. 

If the components are correlated, this can be  considered 
either in the moment  matrix or, in the case of complete 
correlation (tuning), as a  functionally simple relationship 
between the components.  Due to economical and  practical 
reasons, it is usually not possible to use a  sophisticated 
optimization algorithm to find the values of the tuned 
components.  

Since the optimal value of P is close to 0.3 for maximum 
convergence, but in most cases in the neighborhood of 0.9 
for m inimum system cost, we must contract the achieved 
tolerances. This can be  done by short Monte Carlo runs 
with the contraction as parameter to determine the m ini- 
mum cost. In doing so, the Gaussian distribution may be  
replaced by some other desirable distribution. 

F inally, the estimation of 9  would in principle require 
each realization of Y(t) to be  examined for every t E [0, T] 
to see whether the specification is violated or not. Since 
this is not possible, we have to lim it ourselves to taking 
samples of these realizations by choosing some t in [0, T]. 
This could be  done uniformly in the interval, or one  could 
simply choose t = T, thereby assuming that the worst condi- 
tions exist at the end of the system life. The  operational 
factors are sampled according to known statistics. 

Example: 
The system of F ig. 5(a) and  5(b) is a  setup of directional 

filters with altogether 100 designable parameters (61 nomi- 
nal values and 39  tolerances) and  22  nondesignable toler- 
anced ones. Requirements and frequency responses are 
given in F ig. 5(c), 5(d), and  5(e). F ig. 5(f) shows the 

------------------------------------r------------ 

cl 
%l 

cl 
GY 2 

“OIT. tot. ‘! noa. to1. I 

---_-------------~------------------------------ 

Cl .2149 
L2 .9764 

c3 -2282 

CL .L733 

L4 1.8301 

F4 5.4076 

C5 .2735 

C6 1.0149 

Lb 1.2799 

F6 4.4159 

c7 -2936 

CR -3591 

LE 2.3C99 

FR 5.5260 

C9 -3550 

2. 

i. 
2. 

tuned F4 

2. 

2. 

tuned F6 

2. 

2. 

tuned f2 

2. 

.2149 
.9764 

.22E2 

.4733 

1.8301 

5.4076 

.2735 

1.0149 

1.2799 

4.4159 

.2936 

.3591 

2.3099 

5.52tC 

.3:50 

2. 

2. 

2. 

tuned FL 

2. 

2. 

tuned F6 

2. 

2. 

tuned Fa 

2. 

-------------------------------------------------- 

Ll -9943 tuned F2 Rl 75. 

Rl 6.5680 5. 82 .03211 - 

Cl -1767 2. R3 75. - 

R2 424.96 5. 

c3 .6824 2. 

R3 6.5?60 5. 

L3 3.R388 tuned f2 

f2 6.1100 - 

distribution of the objective function f( X, Y) (according to 
6.1) in different phases of the design process as estimated 
by Monte Carlo analysis. The  requirements are met if 
f( X, Y) is less than 0, and  the yield is the value of the 
distribution function at that point. 

It can be  seen that the influence of the operational 
factors will decrease the yield from some 22  percent to 
below 14  percent at start. In the final design, this influence 
is very small. 

After 4400 samples of the optimization (including the 
nondesignable operational factors), the yield has improved 
to about 86  percent, and  the distribution curve is raised 
and moved to the left, which means that the solution is 
better suited to meeting different kinds of disturbances of 
the system elements. This is important, since the actual 
distributions involved are often not very well known. It can 
also be  seen in F ig. 5(d) and  5(e) that the optimized 
responses have a  greater margin towards the critical speci- 
fication points. 

The  component  values (in megahertz, m icrohenry, and  
nanofarads) and  tolerances for the starting point are given 
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TABLE II 

Ll 

c2 

L3 

c3 

F3 

CL 

LS 

CS 

F5 

2.065 

tuned F3 

1.729 

1.979 

tuned F3 

2.189 

2.364 

tuned F5 

1.604 

1.989 

tuned F5 

1.79c 

CC 

L7 

c7 

F7 

l-t66 

tuned F7 

2.7!3 

2.067 

tuned F7 

2.222 

ca 

L9 

c9 

F9 

2.9970 

-4719 

1.7070 

.SClY 

7.0166 

-4330 

2.9207 

.lCCl 

9.3080 

-4281 

1.6569 

-3415 

6.6980 

-3851 

2.4387 

-1535 

8.2260 

-5331 

2.9350 

1.825 

tuned F9 

2.023 

2.9962 

-4839 

1.7905 

.2931 

6.9475 

-4547 

2.9947 

.c9950 

9.22CC 

-4309 

1.7282 

.3248 

6.7177 

-3024 

2.4404 

-1515 

8.2772 

.52?9 

2.9517 

2.081 

tuned F9 

2.222 

-----------------------------I-------__________ 

cl 
2 1 

cl 
2 2 

non. tot. x nom I to1. x 

------------------------------------------------- 

C’ -2137 1.669 -2136 2.203 

L2 -9794 - .9767 - 

c3 -2320 2.029 -2275 1.?13 

CL -4781 2.137 -4771 2.444 

L4 t .a078 tuned F4 1 .a172 tuned FL 

FC 5.4136 - 5.4053 - 

CS -2795 1.917 -2761 2.240 

C6 .9615 I.878 1.0027 1.971 

~6 1.3230 tuned F6 1.29319 tuned F6 

F6 4.4623 - 4.4199 - 

c7 -2835 2.152 -2953 1.918 

ca -3691 2.8CC -3610 2.250 

L? 2.2609 tuned F3 2.2941 tuned Fa 

FE 5.5c94 - 5.53i5 - 

c9 -3372 2.436 -3529 1.738 

----__--------_------__-------_-------__-------- 

Cl0 

Lll 

2.511 2.005 El 
nom. to1. x 

cl D “OIlI. t01. % 

----------------------------------i----------- 

in Table I, and in Table II the optimized nominal values 
and tolerances can be found. The Q-value of all inductors 
is 200 (tolerance+ - 5 percent), and the terminating im- 
pedances are both 75 Q. All designs are compared for equal 
determinant or tolerance cost. More about this procedure 
can be found in [ 131 and [ 141. 

Due to the complexity and size of this example, we have 
refrained from going into more details about it. For the 
interested reader, however, all information concerning ele- 
ment values for the different solutions, tuning procedures, 
environmental distributions, etc., can be obtained from the 
authors. . 

. 
VIII. CONCLUSION 

Ll 1.0056 tuned F2 If1 75. - 

Rl 6.5496 3.511 e2 .03206 - 

Cl -1747 4.141 R3 75. - 

R2 422.94 1.945 

c3 -6804 2.028 

R3 6.4500 2.650 

L3 3.9165 tuned F2 

F2 6.CP45 - 

The development of a search process like the one de- 
scribed in this paper arises from the need for suitable 
design tools adapted to practical design problems in the 
telecommunication industry. The manufacturing and oper- 
ational requirements are of major importance here due to 
economical reasons, and must be considered during the 
development of any method. Some consequences of this 
philosophy are: 

The optimization should be capable of optimizing ran- 
dom functions. 

of parameters. On the other hand, the accuracy of the 
parameters need not often be more than 3 or 4 signifi- 
cant figures. 
The method should be easily adapted to various design 
situations. 
The design procedure presented here is an attempt to 

meet these requirements. We have demonstrated that it is 
possible to device a stochastic search process, that will 
work in various design situations. Needless to say, many 
questions still have to be answered, and other approaches 
can be taken. It is our hope, however, that future research 
will be carried out bearing in mind some of the questions 
raised here, and concentrate on methods that have a great 
potential in practical design situations. 

APPENDIX 
Since the design problem often has a large number of 
designable parameters, the method must not be “dimen- 
sion-sensitive,” by which we mean that the optimization 
work should not increase exponentially with the number 

A. Structure of X 
Let m and i be natural numbers, and consider m inde- 

pendent sets of events S,, S,, . * * ,S, each containing r 
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equally probable events. W e  then have 
X(Sk,-.-X(1/r; . . ,l/r)=L(r). (A.l) 

This gives for iLle combined set of of events 

X(S,S* * *. S,>= FWSk)zLm(r) (‘4.2) 

according to postulate 5. On  the other hand each event in 
the combined event has equal  probability of occurrence 
l/rm, which gives 

L(r”)=L”(r). 

Now choose s, r, n, and  m such that 

sm <r” <sm+‘. 
Then 

mlog(s)<nlog(r)<(m+ l)log(s) 

log(r) 
m/n<- log(s) ++ o/n. 

On the other hand, we have (from postulate 3) 

L(s”)tL(r”)tL(s”+‘) 

Lm(s)tL”(r)tLm+‘(s) 

mlogL(s)~nlogL(r)-c(m+l)logL(s) 

1% Lb) 
m ’n< log L(s) 

c(m+ 1)/n. 

64.3) 

64.4) 

64.5) 

713  

X(Y/X>= I.p(Y/x,)pk= IpkYgk=R~Pp. 

64.9) 
On  the other hand, we have that the probability of occur- 
rence of the event XY is pk times 1  /,c,. . which equals 1  /g, 
and  thus 

X(XY)=L(g)=g 

and according to Postulate 5, 

X(X)=X(XY)/X(Y/X)= ~p;p~=e-‘*“*lobPk. 

(A.lO) 

It now remains to be  shown that Postulate 5  holds for 
arbitrary probabilities: 

X( Y/X) = p  X( Y/xk)p(“k) 

= n [ ~p(y,,xk)-~~y~J”k’] p(xk) 
k  i 

= v 4 [ p(&xk)/p(xk)] -p(y’x’) 

= v ~p(&n,)-P’y’X*‘~ ~p(x,)“‘Y’x*’ 

=nc(xy)~~(xk)&d~~xk) 

i 

Since these relationships must hold for all values of m and 
n, we get 

logL(r) log(r) -- 
log L(s) log(s) G1’n. (A4 

This means that (as n  approaches to infinity) 

b9w = l%L(+d =A 
log(r) w4 

or 
qr)=a~“‘%w. 64.7) 

W e  may without restrictions choose A= 1  and base e, 
which gives 

L(n)=n. (A.81 

Now let us define 

Pk =gk/g, &k =g, g, , g  natural numbers 
k 

and introduce the set of events Y, consisting of n  groups of 
events G ,, each containing g, elements with equal  proba- 
bility of occurrence of l/g,. W e  also assume that the event 
xk implies that y, EG,. W e  then have 

if& 4 Gk 

? if yj EG, 

and 

=X( XY) I-Jp(xk)p(x*) 

=X( XY)/Yc( x). 

It is easily seen that the other postulates also hold. 

B. Optimal Conditions for V(x) 

In order to find the maximizing condit ions for (3.9), we 
introduce the Lagrange function 

F(p, A)=log[(2ne)“det(M)]“‘+y(P-cu) 

+ 2  Yij( At, -‘ii) (A.11) 
i>j 

where 
R=M-‘=[Xij] 

y , y, j = Lagrange mu ltipliers 

P= u(x)dx / & 

o(x) = (det R)“2(2m)-“‘2eQ 

Q= - 1/2(XT-$)A(X-~). 

W e  will also use 

det(M)=(detA)-’ 

det(A)= i Aikcik 
k=l 

where cik is the cofactor of the element Xik. Also, 
mii =cii/det A. 
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Differentiating P w.r.t hjj gives 
aF ---=--+(deth))ta(~~~A) +y$ 

ahij ‘J ‘I 

i>j 
irj 

icj 

adet A 
ax,, =‘ij 

+ ;(det A)-t12 a&t A) ax eQ 

‘J 1 
= (2r)-“‘2(det A)“2eQ 

aQ -= 
ahij 

E+i.(detA) 
-, a(det A) 

‘I ahiJ 1 
I= -~Cxi-Pi)(xj-PJ)* 

Thus we have 

a44 
r=V(X) -~(x;-Pi)(xJ-rJ)+~“Ji 

‘J [ I 

aF 1 
~z-~mji+Y @2 / 

‘v(x) 

Dif ‘ferentiating F w.r.t p, yields 

1 

Yij? i>j 

.[mji-(x,-pi)(xj-pJ)] dx+ 0, i=j 
-Yij, i<j 

y,J 7 i>j 

ICI +m,, + +yP(mji -mij*)+ 0, i=j 

-Yij i<j 

(A.12) 

J( 
m*= ’ 

xi-Pi)(xj-Pj)v(x)dx 

‘J 

Jo v x dx 
& 

(A.13) 

aF ap 
T$L’YG 1 

ap 
lg= / 

a44 dx 
62 aPi 
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a;(x) 
r =(2r)-“‘2(det A)“2eQ 

I 

. &x-p)+ ;(xT  [ -P’)A(-ei)] 
EAtk(Xk-Pk)+ 2hki(Xk-Pk) 
k k I 

= ;v(x)z(xk -pk)(Aik+Xki) 
k 

and thus 

~=~~~v(x~~(xk-~k)(xik+xki)dx 
I k 

. 
:’ 

=Yf 2 (‘ik +‘ki)(pz -pk) 

J 
xkv( x) dx 

pL*k= @  

To summarize, we have 

aF 
----=-~+y~[mjl-m:,]+ 
ax,, 

aF 
F = y; 2 hk +‘k% -pk 

I k 

(A. 14) 

(A.15) 

[ Yij> W  

i 

0, i=j ~0 

-Yij> i<j 

P=a 
AiJ =hj, and mij =mji. 

This will give us 

)=O 

Pi =PLT 
P=a 

and, since P and y are constants 
h4=cA4* 
p=p*. (A.16) 
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